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Abstract

The rapid evolution of nanotechnology has positioned Carbon Nanotube Field-Effect Transistors (CNFETS) as a
promising alternative to traditional Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETS) in the design
of low-power, high-performance Static Random-Access Memory (SRAM) cells. However, optimizing the design of
CNFET-based SRAM cells to meet stringent requirements, such as stability, power efficiency, and scalability, remains
a significant challenge. In this paper, we explore the potential of Machine Learning (ML) algorithms to address these
challenges by leveraging their capabilities in complex design optimization tasks. This paper comprehensively reviews
various ML models, including supervised, unsupervised, reinforcement, and deep learning. It examines their
application in optimizing key performance metrics of CNFET-based SRAM cells. Mathematical models and
formulas for design optimization are presented alongside case studies demonstrating ML techniques’ effectiveness in
improving SRAM stability and reducing power consumption. Finally, we discuss the challenges of integrating ML
into circuit design workflows and propose future research directions, highlighting the transformative potential of ML
in shaping the future of CNFET-based SRAM design.

Keywords: Carbon nanotube field-effect transistor-based static random-access memory, Machine learning
optimization, Design automation, Low-power circuits, Circuit stability, Deep learning in circuit design, Electronic
design automation.

1| Introduction

The primary goal of this review is to explore how ML algorithms can be effectively utilized to optimize the
design of Carbon Nanotube Field-Effect Transistor (CNFET)-based Static Random-Access Memory (SRAM)
cells. Due to their promising properties, the increasing demand for low-power, high-performance SRAM cells
has driven extensive research into CNFET-based designs. However, optimizing these designs for power,
stability, and area efficiency poses significant challenges [1], [2]. This review examines various Machine
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Learning (ML) models and their mathematical formulations employed to enhance the performance of
CNFET-based SRAM cells. CNFETS are considered a promising alternative to conventional Metal-Oxide-
Semiconductor Field-Effect Transistors (MOSFETs) in SRAM design due to their superior electrical
properties, such as higher carrier mobility, lower power consumption, and scalability to nanoscale dimensions.

CNFETs offer the potential for improved speed and energy efficiency, which are crucial for modern memory
applications. Recent studies, such as those by Parvizi and Zanjani [3], have demonstrated that CNFETSs can
achieve significant power savings and speed improvements over traditional Complementary Metal-Oxide-
Semiconductor (CMOS) technology. Moreover, CNFETSs are less susceptible to Short-Channel Effects
(SCEs) and offer greater flexibility regarding channel length scaling, making them ideal candidates for next-
generation memory technologies [4], [5].

The design of CNFET-based SRAM cells presents unique challenges, including variability in carbon nanotube
properties, process vatiations, and the need to balance multiple performance parameters such as read/write
stability, access time, and leakage current. Previous studies have explored various design configurations, such
as differential and single-ended SRAM cells, to address these challenges [6], [7]. However, achieving optimal
performance across all design metrics remains an open problem, prompting the exploration of advanced
optimization techniques.

Design optimization is critical for CNFET-based SRAM cells to ensure reliable operation, minimal power
consumption, and efficient use of silicon area. Traditional optimization methods, such as circuit simulations
and heuristic algorithms, have been employed to improve CNFET-based SRAM designs [8]. However, these
methods often require extensive computation and may not fully capture the complex, multi-dimensional
design space inherent in CNFET technologies. For example, optimization techniques focusing solely on
minimizing power consumption may inadvertently compromise stability or increase read/write delay [9], [10].
Emerging studies suggest that ML algorithms offer a promising solution to these challenges by providing
more efficient and scalable approaches to Design Space Exploration (DSE) and optimization. For instance,
ML models can learn from vast datasets generated from circuit simulations to predict optimal design
parameters that balance power, stability, and performance [11], [12]. This capability is particulatly valuable in
CNFET-based SRAM designs, where the interplay between various parameters is highly non-linear and
difficult to model using traditional methods.

ML has emerged as a powerful tool for optimizing the design of CNFET-based SRAM cells. The use of ML
algorithms in this domain is motivated by their ability to handle complex design spaces, model non-linear
relationships, and make accurate predictions based on limited or noisy data [13]. Recent studies have explored
a variety of ML models, ranging from supervised learning techniques like Support Vector Machines (SVM)
and Artificial Neural Networks (ANNs) to unsupervised learning methods such as clustering and
Reinforcement Learning (RL) algorithms [14], [15]. Based on design parameters, supervised learning
algorithms have been effectively used to predict critical performance metrics of CNFET-based SRAM cells,
such as power consumption and read/write delay [16]. For example, Kenarangi and Partin-Vaisband [17]
demonstrated the use of SVM to optimize the threshold voltage and channel length of CNFETS to achieve
minimal power dissipation while maintaining stability. Similarly, Deep Neural Network (DNN) have been
employed to model complex, non-linear dependencies between design variables and performance outcomes,
providing a more accurate and comprehensive optimization framework [18]. Unsupervised learning
approaches, such as clustering, have been used to identify patterns in design data and group similar SRAM
configurations, enabling more targeted optimization strategies [19]. Meanwhile, RL has shown promise in
dynamically exploring the design space and learning optimal design policies through iterative simulations and
feedback [20]. These approaches leverage the strengths of ML to provide robust and adaptive solutions to
the multi-objective optimization problems inherent in CNFET-based SRAM cell design.

This article will systematically examine the application of these ML models to the design optimization of
CNFET-based SRAM cells, analyzing their performance, benefits, and limitations. By reviewing recent
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advancements and mathematical formulations, this paper aims to provide a comprehensive overview of the
state-of-the-art ML-driven techniques for optimizing CNFET-based SRAM designs.

2| Overview of Carbon Nanotube Field-Effect Transistor-Based
Static Random-Access Memory Cells

2.1| Fundamentals of Carbon Nanotube Field-Effect Transistor Technology

CNFETSs represent an emerging technology that leverages the unique electrical properties of Carbon
Nanotubes (CNTSs) to create high-performance transistors. CNFETs differ from conventional MOSFETS,
which use semiconducting Single-Walled Carbon Nanotubes (SWCNTSs) as the channel material instead of
silicon. This fundamental difference provides several advantages, including higher carrier mobility, lower

power consumption, and the potential for miniaturization to nanoscale dimensions.

CNFETs consist of a semiconducting CNT channel positioned between source and drain terminals, with a
gate terminal controlling the current flow through the channel. The device operates on the principle of
modulating the electrostatic potential of the CNT channel by applying a voltage to the gate. When a voltage
is applied, the gate modulates the carrier density in the channel, allowing current to flow (On-state) or
preventing it (Off-state), similar to traditional Field-Effect Transistors (FETs). However, due to the quasi-
one-dimensional nature of CNTs, CNFETs exhibit ballistic transport characteristics, which significantly
reduce scattering effects and enhance carrier mobility [21].

The key parameters affecting CNFET performance are as follows:

I. Threshold voltage Vi: The voltage at which the CNFET begins to conduct. This parameter influences the
CNT diameter, doping level, and gate dielectric thickness. For example, the threshold voltage is inversely
proportional to the CNT diameter, which allows for adjustable Vth through precise control of CNT
properties [22].

II. Subthteshold Swing (SS): Defined as the slope of the subthreshold region's current voltage (I-V) curve. A
lower SS is desirable for faster switching and lower power consumption. CNFETSs exhibit lower SS values

than MOSFETS, attributed to the reduced density of states in CNT's [23].

III. Channel length Ley: The distance between the source and drain terminals. Shorter channel lengths enable
faster- switching speeds but can introduce SCEs. Due to the ballistic transport properties of CNTs,

CNFETs can achieve superior performance even at nanoscale channel lengths, reducing susceptibility to

SCEs [24].

IV. Contact resistance Re: The resistance between the metal contacts and the CNT channel. Reducing Rc is
critical for achieving low power consumption and high performance. Optimizing the interface between
CNT's and metal contacts can address this [25].

V. Gate dielectric material and thickness: The choice of gate dielectric material and its thickness affect the
channel's electrostatic control and leakage current. High-k dielectrics atre often used to improve gate control
without significantly increasing leakage currents [20].

2.2 | Static Random-Access Memory Cell Design Considerations

Designing SRAM cells using CNFET technology involves several critical considerations to optimize
petformance metrics such as read/write stability, leakage current, access time, and power consumption. The
following sections outline the primary design challenges and the types of SRAM cells commonly used in
CNFET-based designs.

Design criteria and challenges are as follows:

I. Read/write stability: Stability during read and write operations is a significant concern in SRAM cell design.
The read stability is often characterized by the Static Noise Margin (SNM), the maximum noise voltage
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that can be tolerated without flipping the cell's state. CNFET-based SRAM cells must be optimized to
maintain a high SNM while minimizing power consumption. Write stability, defined by the Write Margin
(WM), is another critical parameter, ensuring the cell can be reliably written under various operating
conditions [27].

II. Leakage current: Minimizing leakage currents is crucial for reducing standby power consumption, especially
in battery-operated devices. In CNFET-based SRAM cells, leakage current is primarily due to subthreshold
leakage and gate tunneling leakage. Optimizing the threshold voltage and gate dielectric material can help
mitigate these leakages [28].

III.  Access time: Access time is required to perform a read or write operation. This parameter is influenced by
the transistor switching speed, which is determined by the carrier mobility, channel length, and threshold
voltage of CNFETs. A key design challenge is to balance low access time and high stability [29].

IV. Power consumption: Both dynamic power (Related to charging and discharging capacitive loads during
switching) and static power (Due to leakage currents) are important considerations. CNFET-based SRAM
cells benefit from CNFETS' low switching power, but careful optimization is needed to reduce static power
without compromising other performance metrics [30].

Types of SRAM cells and their performance trade-offs are as follows:

I. 6T SRAM cell: The standard 6-transistor (6T) SRAM cell consists of two cross-coupled inverters (Each
consisting of a pull-up and a pull-down CNFET) and two access CNFETS. This design is commonly used
due to its simple architecture and low power consumption. However, it may suffer from poor read stability

and be sensitive to variations in CNFET parameters, necessitating optimization using ML algorithms [31].

II. 8T SRAM cell: The 8-transistor (8T) SRAM cell introduces two additional transistors to separate the read
and write paths, improving read stability and reducing the likelihood of read disturbance. This design

increases the area overhead, enhances the read margin, and allows faster read operations [32].

III. 10T SRAM cell: The 10-transistor (10T) SRAM cell further decouples the read and write operations and
includes extra transistors to reduce leakage currents and enhance robustness against process variations.
This cell type is particulatly suitable for low-power applications, where maintaining stability and minimizing
power consumption are critical [33].

IV. 12T SRAM cell: The 12-transistor (12T) SRAM cell further enhances stability and performance by
incorporating additional transistors to separate read and write operations completely, providing
independent control over both. This architecture significantly improves read and write stability, especially
under low-voltage operation, while reducing soft error rates. Including extra transistors also minimizes
leakage currents, enhancing noise immunity and reliability in process variations. While the 12T cell increases
area and design complexity, it is ideal for high-performance, low-power applications requiring robust
operation in harsh environments [34].

The design optimization of CNFET-based SRAM cells requires mathematical models that accurately
represent the electrical characteristics of CNFETSs. For example, the drain current Iy of a CNFET can be
expressed as:

Id:%.H.Cox.(vgs_vth).vds’ €))

where: 1) W is the width of the CNT channel, 2) L is the channel length, 3) p is the carrier mobility, 4) Cox
is the oxide capacitance per unit area, 5) Vgs is the gate-source voltage, 6) Vth is the threshold voltage, and
7) Vds is the drain-source voltage.

These models, along with other key formulas, will be critical in understanding the optimization potential
offered by ML algorithms, as discussed in subsequent sections.
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3| Machine Learning in Circuit Design: A Brief Overview

3.1|Introduction to Machine Learning Algorithms

ML has emerged as a powerful tool for optimizing and automating complex design processes in Electronic
Design Automation (EDA). ML algorithms enable the analysis and extraction of patterns from large datasets,
particularly useful for optimizing circuit designs, such as CNFET-based SRAM cells. This section overviews
various ML algorithms relevant to circuit design optimization.

Supervised learning

Supervised learning algorithms are trained using labeled datasets, where the input features (e.g., design
parameters) and the corresponding output labels (e.g., power consumption, delay) are known.

Common supervised learning algorithms include:

I. Linear regression predicts continuous output variables based on input features. For example, linear
regression can model the relationship between a CNFET's width and length and its resulting power
consumption or access time [35].

II. SVM: Effective for classification problems, such as categorizing different SRAM cell designs based on their
stability or power efficiency. SVM can create a hyperplane in a high-dimensional space to separate different
classes of designs [30].

III. ANN: ANNSs are computational models inspired by the human brain's structure and function. They are
particularly useful for capturing complex, non-linear relationships between design variables and
performance metrics. In CNFET-based SRAM design, ANNs can predict multiple performance
characteristics simultaneously [37].

Unsupervised learning

Unsupervised learning algorithms work with unlabeled datasets to identify inherent patterns or groupings
within the data. Examples include:

Clustering algorithms (e.g., K-Means): These are used to group similar SRAM designs based on performance
metrics like stability, power consumption, or leakage current. Clustering can help identify optimal design
clusters or regions within the design space [38].

Principal Component Analysis (PCA) is a dimensionality reduction technique that reduces the number of
variables under consideration, simplifying the complexity of the design space. PCA can help identify the most
influential parameters in CNFET SRAM design [39].

Reinforcement learning

RL involves training an agent to make sequential decisions to maximize a reward. RL can optimize SRAM
design in circuit design by learning the best sequence of design modifications to achieve a target performance

metric, such as minimizing power consumption or maximizing read/write stability [40].

Q-learning: A model-free RL algorithm used to learn the value of actions taken in specific states, useful for
iterative design optimization tasks where direct supervision is not feasible [41].

Deep Q-Networks (DQN): This extension of Q-Learning uses DNN to approximate the optimal action-
value function, optimizing high-dimensional design spaces, such as those encountered in CNFET SRAM
design [42].

Deep learning
Deep learning is a subset of ML that uses DNNs to model complex patterns and relationships.

Convolutional Neural Networks (CNNs): Traditionally used in image recognition, CNNs can extract spatial
hierarchies and patterns in circuit layouts, aiding in optimizing CNFET-based SRAM cells [43].
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Recurrent Neural Networks (RNNs) are useful for time-series prediction tasks. RNNs can predict temporal
variations in SRAM cell performance, such as degradation over time due to aging effects [44].

3.2 | Application of Machine Learning in Electronic Design Automation

ML techniques are increasingly integrated into EDA tools to enhance circuit design and optimization. The
use of ML in EDA encompasses a range of applications, such as DSE, optimization, and prediction of circuit
performance. Below are some specific use cases:

Design space exploration

DSE involves evaluating various design configurations to identify the optimal solution. ML algorithms like
Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) can efficiently explore significant and
complex design spaces by mimicking natural evolution and social behavior, respectively [45]. For instance,
GAs can optimize CNFET SRAM cell design by iteratively selecting, crossing, and mutating design
parameters (e.g., channel length, CNT diameter) to converge on the best-performing solution [46]. The
objective function to be optimized can be formulated as:

Objective Function = .- Power Consumption

2
+p - Read Stability —y - Access Time, @)

where o, B, y are weighting factors representing the relative importance of each parameter.
Circuit performance prediction

ML models, such as ANNs or Gaussian Process Regressions (GPR), can be trained to predict the
performance metrics (e.g., delay, power, area) of CNFET-based SRAM cells based on various input design
parameters [47]. This enables rapid estimation of circuit performance without the need for exhaustive

simulations. For example, an ANN model can take the following inputs:
Input vector: [Ly,, W, Vi, Vg, €6, ]-

Output: [Power, Delay, SNM].

The trained ANN model can accurately predict outputs, significantly reducing the time required for
performance analysis [48].

Optimization of power, performance, and area

Power, Performance, and Area (PPA) optimization is critical in circuit design. ML algorithms such as RL can
dynamically adjust design parameters to achieve an optimal balance between PPA metrics [49]. An RL agent
can be trained to maximize a reward function defined as:

R(s,a) =w, - (Reduction in Power)

+w, - (Improvement in Stability) — w, - (Increase in Area), )

where: s represents the state (Current design configuration), a represents the action (Modification to design

parameters), and w1, wa, and wj are weighting factors.
Layout optimization and physical design

ML models and intense learning techniques like CNNs can assist in optimizing the layout and physical design
of CNFET-based SRAM cells by identifying optimal transistor placements and routing paths. This reduces
parasitic effects and improves overall cell performance [50]. A CNN model can be trained on a dataset of
layout designs, learning the spatial correlations between component placements and performance metrics.
The output can guide designers in choosing the most efficient layout configuration. By integrating ML
algorithms into the EDA process, designers can automate and enhance the optimization of CNFET-based
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SRAM cells, leading to better-performing, power-efficient, and stable circuits. The following section will delve
into specific case studies where these ML techniques have been successfully applied to optimize CNFET
SRAM designs.

4| Machine Learning Models for Carbon Nanotube Field-Effect
Transistor-Based Static Random-Access Memory Design
Optimization

In this section, we will explore various ML models that are particulatly effective for optimizing the design of
CNFET-based SRAM cells. We will discuss the application of supervised, unsupervised, RL, and deep

learning approaches, highlighting their mathematical formulations and specific use cases in design

optimization.

4.1| Supervised Learning Algorithms

Supervised learning algorithms are particulatly useful for predicting performance metrics of CNFET-based
SRAM cells based on input design parameters. These models are trained on datasets containing labeled

examples, where the input features (Such as transistor dimensions, supply voltage, etc.) are associated with

known output performance metrics (Like power consumption, delay, and stability).
Linear regression and support vector machine

Linear regression: Linear regression can establish a linear relationship between the design parameters (e.g.,
channel length, threshold voltage) and performance metrics (e.g., delay, power). For instance, linear regression
can model the impact of increasing the channel length L, of a CNFET on the overall power consumption P
of an SRAM cell. The general form of the linear regression model is:

P=B,+B,L, +B,V, +B,W, +...+¢ @

where:
I. P represents the predicted power consumption.
II. Bo, B1, B2, ... are the regression coefficients.
III. Len, Vi, and W are the design parameters (Channel length, threshold voltage, and channel width).
IV. ¢ is the error term.

By minimizing the error term ¢ through least squares fitting, the regression model can provide insights into
the influence of individual design parameters on performance metrics. This can guide optimization by
indicating which parameters significantly impact power or delay.

SVM: SVMs can classify SRAM cell designs into different categories based on their performance
characteristics (e.g., stable vs. unstable designs). The SVM algorithm aims to find the optimal hyperplane that
maximizes the margin between different classes in a high-dimensional feature space. The general form of the
SVM model is:

N

minimize % Il wll? +CZ§i_ 5)
i=1

S.t.

Yi(W'Xi+b)21_éizéi20. (6)

I. wis the weight vector of the hyperplane.

II.  C s the regularization parameter.
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III. & are the slack variables for soft margin classification.
IV. yi are the class labels, and xi are the feature vectors representing design parameters.

SVM can help optimize CNFET SRAM designs by categorizing them based on performance metrics and
identifying the optimal class boundaries [51], [52].

Artificial neural network

ANNSs are highly effective for modeling complex non-linear relationships between CNFET design parameters
and performance outcomes, such as power consumption, delay, and stability. They are capable of learning
from data and generalizing to unseen design configurations. An ANN consists of multiple layers (Input,
hidden, and output layers) with interconnected neurons. The mathematical representation of a simple
feedforward neural network with one hidden layer can be given by

h=o(W;x+b,),
§=W,h+b,, ™

where:
1. xis the input vector representing design parameters.
II. 'W; and W are weight matrices for the hidden and output layers.
III. by, and b2 are bias vectots.
IV. () is the activation function (e.g., ReLU, Sigmoid).
V. ¥ is the predicted output (e.g., power consumption).

The ANN can be trained using backpropagation to minimize the Mean Squared Error (MSE) between the
predicted and actual performance metrics:

MSE ZLZ(Yi _91)2a ®)

i=l1

where: 1) y; is the actual value, 2) ¥ is the predicted value, and 3) n is the number of training samples. This

approach can predict performance metrics for new CNFET SRAM designs, accelerating the optimization
process [53].

4.2 | Unsupervised Learning Algorithms

Unsupervised learning algorithms can identify patterns or clusters within design data without requiring labeled
datasets. These methods are particularly useful for grouping similar design configurations based on
performance characteristics.

K-Means clustering: IK-Means clustering can partition CNFET SRAM designs into distinct groups based on
similarities in design parameters or performance metrics (e.g., leakage current, read stability). The objective
of K-Means is to minimize the Within-Cluster Sum of Squares (WCSS):

K
minimize Z z Ihx, —p, 117, )

k=11ieCy

where:
I. Kis the number of clusters.
II. xiis the data point representing a design.

III.  p is the centroid of cluster Cg.
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By clustering designs with similar performance metrics, designers can identify regions in the design space
likely to yield optimal results.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN): DBSCAN is useful for identifying
clusters of high-density points in the design space, representing optimal or near-optimal design configurations.
DBSCAN defines clusters based on the density of points and identifies noise (Outliers). It requires e
(Maximum distance between points in a cluster) and MinPts (Minimum number of points to form a cluster).
DBSCAN can effectively handle noise in design data and identify dense regions that represent promising
design configurations [54].

4.3 | Reinforcement Learning for Design Optimization

RL techniques can be employed to optimize design parameters by learning from iterative exploration and

feedback [55], [56].

Policy-based methods (e.g., policy gradients): Policy-based RL methods learn a parameterized policy n(a | s;0)
that directly maps design states s (e.g., current parameter values) to actions a (e.g., adjustments to parameters)
to maximize a cumulative reward. The objective is to maximize the expected cumulative reward:

J(0)=E, {Ztht } (10)

where:
1. 0 represents policy parameters.
II. vy is the discount factor.
IIL. -1 is the reward at time step t.

Policy gradients can be used to find an optimal policy that improves the performance of CNFET-based
SRAM designs over time through trial and error.

Value-based methods (e.g., Q-learning): Value-based methods like Q-learning aim to learn the optimal value
function Q(s, a) that estimates the maximum cumulative reward achievable from a state s by taking an action.
The Q-learning update rule is:

Q(s,a) « Q(s,a) + afr+ymax, Q(s’,a") - Q(s,a)], a11)

where:
1. ais the learning rate.
II. ris the immediate reward.
II1. s'is the next state.

Q-learning can optimize SRAM design parameters by iteratively adjusting them to maximize performance
metrics.

4.4 | Deep Learning Approaches

Deep learning models like CNNs and RNNss can extract complex features from design data and predict long-
term reliability and performance metrics.

CNN: CNNs can be used to analyze spatial patterns in the design parameter space, such as spatial correlation
in transistor layouts. A CNN consists of convolutional layers that apply filters to input data to detect features:
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1 -1 1 1
X = G[Zx(wmxﬁn) "W, +b )’ (12)
m,n

where:
I. xl is the convolutional layer output at position (i, j).
II. w'nq are the weights of the filter.
II1. o is the activation function.

CNNs can predict which SRAM designs will have favorable performance characteristics based on spatial data
patterns [57], [58].

RNN: RNNSs are suitable for predicting temporal reliability or degradation over time due to their capability
to handle sequential data [59]. An RNN computes hidden states that capture temporal dependencies:

ht = G(WhXt + Uthl +bh), (13)

where:
I. h:is the hidden state at time t.
IL. xis the input at time t.
III. W\, Uy, are weight matrices.
IV. o is the activation function.

RNNs can model the long-term reliability of CNFET-based SRAM designs, allowing designers to optimize
for durability and stability over time. By leveraging these ML models, the design and optimization of CNFET-
based SRAM cells can be significantly accelerated, leading to designs that offer enhanced performance,
reliability, and energy efficiency [60].

5| Case Studies and Comparative Analysis

This section delves into two specific case studies that highlight the application of ML algorithms in optimizing
CNFET-based SRAM cell designs. The first case study focuses on enhancing SRAM stability, while the
second addresses reducing power consumption. A detailed comparative analysis follows to evaluate the
strengths and weaknesses of different ML models in various design optimization scenarios [36], [61]—[65].

5.1| Case Study 1. Optimization of Static Random-Access Memory Stability
Using Machine Learning Algorithms

Stability is a paramount design objective for CNFET-based SRAM cells, particularly when aiming for reliable
operation under scaled-down technology nodes. Stability optimization maximizes the SNM while balancing
parameters like delay and power consumption.

Objective
To maximize the SNM of a 6T CNFET-based SRAM cell while maintaining acceptable read and write delays.
Machine learning algorithms employed

Random Forest (RF): Utilized to predict the SNM based on input design parameters (Such as channel length,
threshold voltage, etc.).

GA: Used to optimize the design parameters to achieve the highest possible SNM with minimal delay trade-
offs.

Optimization approach
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Data preparation: A dataset of simulated SRAM designs was generated using HSPICE, varying key parameters
like channel length (Le), threshold voltage (Vu), channel width (Wa,), and supply voltage (Vad). These
parameters were chosen because they significantly impact SRAM stability.

RF model training: The RF model was trained to predict SNM values based on the input features. The model's
feature importance analysis indicated that Vi, and La, were the most influential factors in determining SNM.

GA optimization: The GA was initialized with a diverse population of SRAM designs, and a fitness function
was defined to maximize SNM while penalizing configurations with excessive delay. The algorithm iteratively
evolved the population over 150 generations to converge to an optimal design.

The optimal design achieved a 15% increase in SNM compared to the baseline, with only a 5% increase in
delay. The GA's convergence demonstrated the effectiveness of

combining predictive modeling (RF) with heuristic optimization (GA) for stability optimization.
5.2 | Case Study 2. Power Consumption Reduction in Carbon Nanotube Field-
Effect Transistor-Based Static Random-Access Memory Design

Minimizing power consumption in CNFET-based SRAM cells is crucial, especially for portable and battery-
operated devices. This case study explores ML techniques to optimize power efficiency while maintaining
acceptable performance levels.

Objective

To minimize static and dynamic power consumption in an 8T CNFET-based SRAM cell while ensuring a
minimum acceptable speed and stability.

Machine learning techniques applied
SVM: Applied for classification to identify feasible low-power designs based on initial constraints.

DNN: Employed for regression tasks to predict power consumption metrics and guide the optimization

process.
PSO: Utilized for multi-objective optimization to fine-tune design parameters based on DNN predictions.
Optimization approach

Data collection: The dataset was generated by simulating numerous SRAM configurations using Cadence
Virtuoso, with variations in gate length, oxide thickness, Va4, and temperature.

SVM Classification: An SVM with a Radial Basis Function (RBF) kernel was trained to classify designs as
"Low Power" or "High Power," achieving an 89% classification accuracy.

DNN Regression: A DNN with three hidden layers was trained to predict static and dynamic power
consumption, achieving a Mean Absolute Percentage Error (MAPE) of 3.5%.

PSO Optimization: PSO was used to search for the optimal parameter set to minimize power consumption
while maintaining performance constraints.

The optimized SRAM design achieved a 22% reduction in static power and a 17% reduction in dynamic
power, maintaining desired speed and stability metrics. PSO effectively refined the parameter search space
based on DNN predictions.

5.3 | Comparative Analysis of Different Machine Learning Models

This section compares the strengths and weaknesses of the different ML algorithms used in the two case
studies and evaluates their effectiveness in various CNFET-based SRAM design optimization scenarios. The
results of these comparisons are shown in Tables 1-3.
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Table 1. Comparison of machine learning algorithms for static random-access memory stability optimization.

ML Model Strengths Weaknesses Performance in
Stability Optimization

RF High interpretability, robust to Requires large datasets, less Effective for predicting
overfitting, good for feature effective for high-dimensional data ~ SNM, identifying key
importance ranking parameters

GA Effective for global optimization, =~ Computationally expensive, slow Achieved significant
handles multi-objective problems  convergence in complex spaces SNM improvement but
well slow convergence

SVM Strong for binaty classification Sensitive to parameter tuning, less  Suitable for classifying
tasks, handles non-linear effective with noisy data feasible SRAM
separations well configurations

DNN Excellent at capturing complex, Requires substantial training data, Effective for predicting
non-linear relationships with high  risk of overfitting, computationally ~ performance metrics,
accuracy intensive power consumption

PSO Fast convergence, suitable for It may get stuck in local minima Efficient in power

continuous optimization
problems

and requires good parameter
initialization

optimization, balancing
multiple objectives

Table 2. Comparative analysis: Effectiveness of machine learning algorithms in power optimization.

Criteria RF GA SVM DNN PSO
Computational ~ Moderate Low High (Fast Low to moderate  High (Fast
efficiency (Training and (Computationally classification) (Depending on convergence,
inference fast)  intensive model size) low compute
optimization) cost)
Accuracy High (For High (After Moderate (Depends ~ Very high (With ~ High (Given
initial convergence) on data quality) sufficient data) good initial
predictions) parameters)
Ease of Moderate Moderate to high High Low to moderate Moderate
implementation  (Requires (Complex (Straightforward (Complex (Requires
parameter optimization setup)  binary classification) — models, training)  domain
tuning) expertise)
Data Large datasets ~ Moderate (Depends  Low to Moderate Very High Moderate
Requirements needed for on fitness function  (Small to medium (Large training (Sufficient
training design) datasets) datasets initial samples
required) needed)
Scalability Moderate Low (Difficult to High (Scales well Moderate to High
(Scales well scale due to with additional High (Can scale  (Adaptable to
with data computational cost)  features) with neural different scales)
volume) architecture)
Interpretability ~ High (Provides Low (Black-box Moderate to High Low (Complex Moderate
feature nature) (With lineat/non- to interpret (Depends on
importance) linear kernels) neural weights) implementation

details)
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Table 3. Summary of machine learning models' petformance across case studies.

Optimization Goal Best Performing ML Model Rationale

SRAM Stability Combination of RF + GA RF provides insight into key parameters
Optimization affecting SNM, while GA effectively explores
the global design space for optimal solutions.

Power Consumption Combination of SVM + SVM quickly identifies feasible low-power

Reduction DNN + PSO configurations, DNN accurately predicts
power metrics, and PSO efficiently fine-tunes
the design.

5.4 | Detailed Observations and Insights

Trade-offs in model selection:

I. RF is useful for initial exploration and feature selection due to its interpretability, but it is less suited for
high-dimensional optimization tasks without additional heuristic methods.

II. GA is powerful for global optimization but may require extensive computational resources, especially in

highly complex design spaces.

III. SVM provides fast, reliable classification but may not capture complex relationships unless paired with
mote robust models.

IV. DNN offers high accuracy in predicting complex non-linear outcomes but requires careful tuning and large
datasets to avoid overfitting.

V. PSO is efficient for continuous optimization tasks and can complement predictive models by fine-tuning
design parameters based on their outputs.

Combining models for enhanced results:

I. Combining MLL models like RF with GA or DNN with PSO can leverage their strengths, such as using RF

for rapid feature selection and GA for extensive parameter optimization.

II. Hybrid approaches, where different models handle different aspects of the design process (e.g., SVM for
initial classification and PSO for optimization), effectively balance performance metrics like speed,

accuracy, and power consumption.
6 | Challenges and Future Directions

Numerous opportunities have arisen with the advancement of CNFET technology and the growing interest
in using ML techniques for SRAM design optimization. However, researchers and engineers must address
several challenges. This section outlines the primary obstacles in applying ML, to CNFET-based SRAM
design, followed by a discussion of future trends and emerging techniques in this interdisciplinary domain.

6.1| Challenges in Applying Machine Learning to Carbon Nanotube Field-
Effect Transistor-Based Static Random-Access Memory Design

The integration of ML. models into CNFET-based SRAM design presents several unique challenges, which
stem from both the technology's complexity and the limitations of cutrent ML approaches.

Data availability and quality

One of the primary challenges in applying ML to CNFET-based SRAM design is the availability of high-
quality datasets. Extensive datasets of simulated or experimental SRAM designs with vatied parameters (e.g.,
transistor dimensions, threshold voltages, supply voltages) are required to train ML models effectively. These
datasets should cover various operational conditions, including temperature variations, process variations,

and different workload scenarios.



99 Jali et al. | Ann. Proc. Eng. Manag. 1(1) (2024) 86-105

Challenge: CNFET technology is still in the research phase, and experimental data is relatively scarce
compared to traditional MOSFET technology. Simulation tools for CNFETS, such as HSPICE or Cadence,

are computationally intensive, limiting the generation of large datasets.

Solution directions: Developing efficient surrogate models to approximate the behavior of CNFETSs can
reduce the computational load associated with simulations. Techniques like generative models (e.g., variational
autoencoders or GANSs) could create synthetic datasets that mimic real design scenatios.

Model Interpretability

ML models, intense learning approaches, ate often considered "black-box" models. This lack of
interpretability can be problematic in the highly controlled and precise environment of circuit design, where
understanding the relationship between input parameters and output performance metrics is critical.

Challenge: Engineers must understand how specific parameters (e.g., channel length, gate capacitance)
influence performance metrics (e.g., power consumption, SNM). Complex ML models like DNNs do not
provide direct insights into these relationships.

Solution directions: Techniques like SHapley Additive Explanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) can improve model interpretability by providing insights into each feature's
contribution to the final prediction.

Another potential direction is the integration of simpler, more interpretable models such as decision trees or
RFs alongside more complex ML methods for optimization tasks, balancing accuracy with transparency.

Computational complexity

Optimizing CNFET-based SRAM cells with ML techniques can be computationally expensive due to the vast
parameter search space and the need for iterative simulations or optimizations. This computational burden is
further compounded when exploring multi-objective optimization problems (e.g., power, delay, and stability
trade-offs).

Challenge: The high computational cost associated with training models and running optimization algorithms

for large-scale designs limits the practical application of ML in real-wotld environments.

Solution directions: Distributed computing and cloud-based platforms can be leveraged to parallelize the training
and optimization processes.

In addition, model compression techniques, such as pruning or quantization, can reduce the computational

overhead of using large neural networks without significantly sacrificing accuracy.
Integration with existing electronic design automation tools

Integrating ML techniques into existing EDA workflows for CNFET-based SRAM designs remains a
significant challenge. EDA tools such as Cadence, Synopsys, and HSPICE are traditionally used for physical

layout, timing analysis, and verification, but most do not natively support ML-based design optimization.

Challenge: The lack of a seamless interface between ML frameworks (e.g., TensorFlow, PyTorch) and EDA
tools makes it difficult for designers to apply ML-driven optimizations in their existing workflows.

Solution directions: Future development of specialized plugins or APIs to integrate ML models directly into
EDA tools could streamline the design process. For instance, ML models could be embedded within the
synthesis and simulation steps, allowing real-time optimization as part of the standard design flow.

6.2 | Future Trends in Machine Learning for Circuit Design Optimization

Despite the challenges, ML-based design optimization for CNFET-based SRAM cells holds immense promise
for future research and practical applications. This section explores emerging trends and potential
advancements in the field.



Machine learning-driven design optimization of CNFET-based SRAM cells 100

Emerging machine learning algorithms for circuit design

As ML continues to evolve, new algorithms and frameworks are being developed to address the specific needs

of circuit design.

RL: RL has shown significant promise in autonomous decision-making and optimization problems. In
CNFET-based SRAM design, RL could optimize circuit parameters in a dynamic, iterative fashion, where the
system learns to optimize for multiple objectives (e.g., power, delay, area) by interacting with the environment.

Federated Learning (FL): FL is a decentralized ML approach that allows models to be trained across multiple
devices without sharing raw data. This can be particularly beneficial in CNFET-SRAM optimization, where
design data from different fabrication plants can improve model accuracy while maintaining data privacy.

Hybrid machine learning models
Hybrid ML models, which combine the strengths of different algorithms, are emerging as a powerful tool in
circuit design optimization.

A hybrid approach combining RL for dynamic parameter tuning and GA for global exploration could achieve
better design outcomes for CNFET-based SRAM cells by efficiently navigating the complex design space
while minimizing computational overhead. Let’s assume a fitness function F(x) for optimizing the delay and
power consumption of an SRAM cell:

F(x) = w, xdelay(x) + w, x power(x), (14)

where wi and w2 are weighting factors. A hybrid RL-GA algorithm can optimize this function by:
I. Using RL to adjust the parameters x dynamically.
II. Utilizing GA to explore different initial configurations based on the fitness function F(x).
Quantum computing for machine learning in circuit design

Quantum computing is poised to revolutionize various fields, and its integration with ML could provide
significant advances in circuit design optimization.

Potential applications: Quantum computing could dramatically reduce the time required for simulating
complex circuits, such as CNFET-based SRAM cells. By leveraging Quantum Machine Learning (QML),
designers could solve optimization problems that are currently computationally intractable using classical

approaches.

Quantum Support Vector Machines (QSVMs) and Quantum Neural Networks (QNNs) could be applied to
classify and optimize SRAM designs much faster than their classical counterparts, especially when dealing

with high-dimensional parameter spaces.
Automated design space exploration

As the complexity of CNFET-based SRAM designs increases, automated DSE tools that leverage ML will
become indispensable. These tools will automate the exploration of large design spaces, significantly reducing
the time needed for optimization.

Automated DSE: By integrating ML, models into EDA workflows, automated DSE could evaluate millions
of design variations in parallel. Techniques like Bayesian optimization could efficiently search for optimal
design parameters by balancing exploration and exploitation of the design space.

Sustainability and energy-efficient design

Future research in ML-driven design optimization for CNFET-based SRAMs will increasingly focus on
sustainability and energy efficiency. The growing demand for low-power, environmentally friendly devices
will drive the development of optimization algorithms that prioritize energy efficiency without sacrificing
performance.
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Green computing trends: ML models designed to optimize CNFET-based SRAM cells for low power
consumption will be aligned with green computing initiatives, further emphasizing the importance of

developing energy-efficient circuits.

Despite the challenges of data availability, computational complexity, and integration into existing design
tools, ML has shown tremendous potential for optimizing CNFET-based SRAM designs. Future research
will likely focus on developing more interpretable, efficient, and integrated ML models. Emerging trends such
as hybrid models, RL, and quantum computing will redefine the landscape of circuit design optimization,
paving the way for more advanced and efficient CNFET-based SRAM technologies.

7| Conclusion

The application of ML to the design optimization of CNFET-based SRAM cells offers significant
advancements in stability, power efficiency, and performance. Designers can efficiently explore complex
design spaces and address multi-objective optimization challenges by leveraging algorithms like neural
networks, RL, and SVM. ML models enable the fine-tuning of SRAM parameters, reducing power
consumption, improving stability, and better performance, especially in low-power applications such as IoT
devices. The transformative potential of ML in SRAM design is clear, as it automates traditionally manual and
time-consuming processes. ML accelerates the design process and allows for the discovery of novel solutions
that maximize performance while minimizing costs. With the future integration of quantum computing and
advanced ML techniques, the role of ML in optimizing CNFET-based SRAM cells is expected to grow,

driving further innovation in the design of next-generation electronic systems.
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