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1|Introduction    

The primary goal of this review is to explore how ML algorithms can be effectively utilized to optimize the 

design of Carbon Nanotube Field-Effect Transistor (CNFET)-based Static Random-Access Memory (SRAM) 

cells. Due to their promising properties, the increasing demand for low-power, high-performance SRAM cells 

has driven extensive research into CNFET-based designs. However, optimizing these designs for power, 

stability, and area efficiency poses significant challenges [1], [2]. This review examines various Machine 
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Abstract 

The rapid evolution of nanotechnology has positioned Carbon Nanotube Field-Effect Transistors (CNFETs) as a 

promising alternative to traditional Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) in the design 

of low-power, high-performance Static Random-Access Memory (SRAM) cells. However, optimizing the design of 

CNFET-based SRAM cells to meet stringent requirements, such as stability, power efficiency, and scalability, remains 

a significant challenge. In this paper, we explore the potential of Machine Learning (ML) algorithms to address these 

challenges by leveraging their capabilities in complex design optimization tasks. This paper comprehensively reviews 

various ML models, including supervised, unsupervised, reinforcement, and deep learning. It examines their 

application in optimizing key performance metrics of CNFET-based SRAM cells.  Mathematical models and 

formulas for design optimization are presented alongside case studies demonstrating ML techniques’ effectiveness in 

improving SRAM stability and reducing power consumption. Finally, we discuss the challenges of integrating ML 

into circuit design workflows and propose future research directions, highlighting the transformative potential of ML 

in shaping the future of CNFET-based SRAM design.  

Keywords: Carbon nanotube field-effect transistor-based static random-access memory, Machine learning 
optimization, Design automation, Low-power circuits, Circuit stability, Deep learning in circuit design, Electronic 
design automation. 

mailto:sma_zanjani@pel.iaun.ac.ir
https://doi.org/10.48314/apem.v1i1.27
http://www.apem.reapress.com/
mailto:Jali_hasan@sco.iaun.ac.ir
mailto:behrang_barekatain@iaun.ac.ir
mailto:sma_zanjani@pel.iaun.ac.ir
mailto:dolatshahi@pel.iaun.ac.ir


Jali et al. | Ann. Proc. Eng. Manag. 1(1) (2024) 86-105 

 

87

 

  Learning (ML) models and their mathematical formulations employed to enhance the performance of 

CNFET-based SRAM cells. CNFETs are considered a promising alternative to conventional Metal-Oxide-

Semiconductor Field-Effect Transistors (MOSFETs) in SRAM design due to their superior electrical 

properties, such as higher carrier mobility, lower power consumption, and scalability to nanoscale dimensions.  

CNFETs offer the potential for improved speed and energy efficiency, which are crucial for modern memory 

applications. Recent studies, such as those by Parvizi and Zanjani [3], have demonstrated that CNFETs can 

achieve significant power savings and speed improvements over traditional Complementary Metal-Oxide-

Semiconductor (CMOS) technology. Moreover, CNFETs are less susceptible to Short-Channel Effects 

(SCEs) and offer greater flexibility regarding channel length scaling, making them ideal candidates for next-

generation memory technologies [4], [5]. 

The design of CNFET-based SRAM cells presents unique challenges, including variability in carbon nanotube 

properties, process variations, and the need to balance multiple performance parameters such as read/write 

stability, access time, and leakage current. Previous studies have explored various design configurations, such 

as differential and single-ended SRAM cells, to address these challenges [6], [7]. However, achieving optimal 

performance across all design metrics remains an open problem, prompting the exploration of advanced 

optimization techniques.  

Design optimization is critical for CNFET-based SRAM cells to ensure reliable operation, minimal power 

consumption, and efficient use of silicon area. Traditional optimization methods, such as circuit simulations 

and heuristic algorithms, have been employed to improve CNFET-based SRAM designs [8]. However, these 

methods often require extensive computation and may not fully capture the complex, multi-dimensional 

design space inherent in CNFET technologies. For example, optimization techniques focusing solely on 

minimizing power consumption may inadvertently compromise stability or increase read/write delay [9], [10]. 

Emerging studies suggest that ML algorithms offer a promising solution to these challenges by providing 

more efficient and scalable approaches to Design Space Exploration (DSE)  and optimization. For instance, 

ML models can learn from vast datasets generated from circuit simulations to predict optimal design 

parameters that balance power, stability, and performance [11], [12]. This capability is particularly valuable in 

CNFET-based SRAM designs, where the interplay between various parameters is highly non-linear and 

difficult to model using traditional methods. 

ML has emerged as a powerful tool for optimizing the design of CNFET-based SRAM cells. The use of ML 

algorithms in this domain is motivated by their ability to handle complex design spaces, model non-linear 

relationships, and make accurate predictions based on limited or noisy data [13]. Recent studies have explored 

a variety of ML models, ranging from supervised learning techniques like Support Vector Machines (SVM) 

and Artificial Neural Networks (ANNs) to unsupervised learning methods such as clustering and 

Reinforcement Learning (RL) algorithms [14], [15]. Based on design parameters, supervised learning 

algorithms have been effectively used to predict critical performance metrics of CNFET-based SRAM cells, 

such as power consumption and read/write delay [16]. For example, Kenarangi and Partin-Vaisband [17] 

demonstrated the use of SVM to optimize the threshold voltage and channel length of CNFETs to achieve 

minimal power dissipation while maintaining stability. Similarly, Deep Neural Network (DNN) have been 

employed to model complex, non-linear dependencies between design variables and performance outcomes, 

providing a more accurate and comprehensive optimization framework [18]. Unsupervised learning 

approaches, such as clustering, have been used to identify patterns in design data and group similar SRAM 

configurations, enabling more targeted optimization strategies [19]. Meanwhile, RL has shown promise in 

dynamically exploring the design space and learning optimal design policies through iterative simulations and 

feedback [20]. These approaches leverage the strengths of ML to provide robust and adaptive solutions to 

the multi-objective optimization problems inherent in CNFET-based SRAM cell design. 

This article will systematically examine the application of these ML models to the design optimization of 

CNFET-based SRAM cells, analyzing their performance, benefits, and limitations. By reviewing recent 
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  advancements and mathematical formulations, this paper aims to provide a comprehensive overview of the 

state-of-the-art ML-driven techniques for optimizing CNFET-based SRAM designs. 

2|Overview of Carbon Nanotube Field-Effect Transistor-Based 

Static Random-Access Memory Cells 

2.1|Fundamentals of Carbon Nanotube Field-Effect Transistor Technology 

CNFETs represent an emerging technology that leverages the unique electrical properties of Carbon 

Nanotubes (CNTs) to create high-performance transistors. CNFETs differ from conventional MOSFETs, 

which use semiconducting Single-Walled Carbon Nanotubes (SWCNTs) as the channel material instead of 

silicon. This fundamental difference provides several advantages, including higher carrier mobility, lower 

power consumption, and the potential for miniaturization to nanoscale dimensions.  

CNFETs consist of a semiconducting CNT channel positioned between source and drain terminals, with a 

gate terminal controlling the current flow through the channel. The device operates on the principle of 

modulating the electrostatic potential of the CNT channel by applying a voltage to the gate. When a voltage 

is applied, the gate modulates the carrier density in the channel, allowing current to flow (On-state) or 

preventing it (Off-state), similar to traditional Field-Effect Transistors (FETs). However, due to the quasi-

one-dimensional nature of CNTs, CNFETs exhibit ballistic transport characteristics, which significantly 

reduce scattering effects and enhance carrier mobility [21].  

The key parameters affecting CNFET performance are as follows: 

I. Threshold voltage Vth: The voltage at which the CNFET begins to conduct. This parameter influences the 

CNT diameter, doping level, and gate dielectric thickness. For example, the threshold voltage is inversely 

proportional to the CNT diameter, which allows for adjustable Vth through precise control of CNT 

properties [22]. 

II. Subthreshold Swing (SS): Defined as the slope of the subthreshold region's current voltage (I-V) curve. A 

lower SS is desirable for faster switching and lower power consumption. CNFETs exhibit lower SS values 

than MOSFETs, attributed to the reduced density of states in CNTs [23]. 

III. Channel length Lch: The distance between the source and drain terminals. Shorter channel lengths enable 

faster- switching speeds but can introduce SCEs. Due to the ballistic transport properties of CNTs, 

CNFETs can achieve superior performance even at nanoscale channel lengths, reducing susceptibility to 

SCEs [24]. 

IV. Contact resistance Rc: The resistance between the metal contacts and the CNT channel. Reducing Rc is 

critical for achieving low power consumption and high performance. Optimizing the interface between 

CNTs and metal contacts can address this [25]. 

V. Gate dielectric material and thickness: The choice of gate dielectric material and its thickness affect the 

channel's electrostatic control and leakage current. High-k dielectrics are often used to improve gate control 

without significantly increasing leakage currents [26]. 

2.2|Static Random-Access Memory Cell Design Considerations 

Designing SRAM cells using CNFET technology involves several critical considerations to optimize 

performance metrics such as read/write stability, leakage current, access time, and power consumption. The 

following sections outline the primary design challenges and the types of SRAM cells commonly used in 

CNFET-based designs.  

Design criteria and challenges are as follows: 

I. Read/write stability: Stability during read and write operations is a significant concern in SRAM cell design. 

The read stability is often characterized by the Static Noise Margin (SNM), the maximum noise voltage 
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  that can be tolerated without flipping the cell's state. CNFET-based SRAM cells must be optimized to 

maintain a high SNM while minimizing power consumption. Write stability, defined by the Write Margin 

(WM), is another critical parameter, ensuring the cell can be reliably written under various operating 

conditions [27]. 

II. Leakage current: Minimizing leakage currents is crucial for reducing standby power consumption, especially 

in battery-operated devices. In CNFET-based SRAM cells, leakage current is primarily due to subthreshold 

leakage and gate tunneling leakage. Optimizing the threshold voltage and gate dielectric material can help 

mitigate these leakages [28]. 

III. Access time: Access time is required to perform a read or write operation. This parameter is influenced by 

the transistor switching speed, which is determined by the carrier mobility, channel length, and threshold 

voltage of CNFETs. A key design challenge is to balance low access time and high stability [29]. 

IV. Power consumption: Both dynamic power (Related to charging and discharging capacitive loads during 

switching) and static power (Due to leakage currents) are important considerations. CNFET-based SRAM 

cells benefit from CNFETs' low switching power, but careful optimization is needed to reduce static power 

without compromising other performance metrics [30]. 

Types of SRAM cells and their performance trade-offs are as follows: 

I. 6T SRAM cell: The standard 6-transistor (6T) SRAM cell consists of two cross-coupled inverters (Each 

consisting of a pull-up and a pull-down CNFET) and two access CNFETs. This design is commonly used 

due to its simple architecture and low power consumption. However, it may suffer from poor read stability 

and be sensitive to variations in CNFET parameters, necessitating optimization using ML algorithms [31]. 

II. 8T SRAM cell: The 8-transistor (8T) SRAM cell introduces two additional transistors to separate the read 

and write paths, improving read stability and reducing the likelihood of read disturbance. This design 

increases the area overhead, enhances the read margin, and allows faster read operations [32]. 

III. 10T SRAM cell: The 10-transistor (10T) SRAM cell further decouples the read and write operations and 

includes extra transistors to reduce leakage currents and enhance robustness against process variations. 

This cell type is particularly suitable for low-power applications, where maintaining stability and minimizing 

power consumption are critical [33]. 

IV. 12T SRAM cell: The 12-transistor (12T) SRAM cell further enhances stability and performance by 

incorporating additional transistors to separate read and write operations completely, providing 

independent control over both. This architecture significantly improves read and write stability, especially 

under low-voltage operation, while reducing soft error rates. Including extra transistors also minimizes 

leakage currents, enhancing noise immunity and reliability in process variations. While the 12T cell increases 

area and design complexity, it is ideal for high-performance, low-power applications requiring robust 

operation in harsh environments [34]. 

The design optimization of CNFET-based SRAM cells requires mathematical models that accurately 

represent the electrical characteristics of CNFETs. For example, the drain current Id of a CNFET can be 

expressed as: 

where: 1) W is the width of the CNT channel, 2) L is the channel length, 3) μ is the carrier mobility, 4) Cox 

is the oxide capacitance per unit area, 5) Vgs is the gate-source voltage, 6) Vth is the threshold voltage, and 

7) Vds is the drain-source voltage. 

These models, along with other key formulas, will be critical in understanding the optimization potential 

offered by ML algorithms, as discussed in subsequent sections. 

( )d ox gs th ds

W
,I μ C V V V

L
=    −   (1) 
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  3|Machine Learning in Circuit Design: A Brief Overview 

3.1|Introduction to Machine Learning Algorithms 

ML has emerged as a powerful tool for optimizing and automating complex design processes in Electronic 

Design Automation (EDA). ML algorithms enable the analysis and extraction of patterns from large datasets, 

particularly useful for optimizing circuit designs, such as CNFET-based SRAM cells. This section overviews 

various ML algorithms relevant to circuit design optimization. 

Supervised learning 

Supervised learning algorithms are trained using labeled datasets, where the input features (e.g., design 

parameters) and the corresponding output labels (e.g., power consumption, delay) are known.  

Common supervised learning algorithms include: 

I. Linear regression predicts continuous output variables based on input features. For example, linear 

regression can model the relationship between a CNFET's width and length and its resulting power 

consumption or access time [35]. 

II. SVM: Effective for classification problems, such as categorizing different SRAM cell designs based on their 

stability or power efficiency. SVM can create a hyperplane in a high-dimensional space to separate different 

classes of designs [36]. 

III. ANN: ANNs are computational models inspired by the human brain's structure and function. They are 

particularly useful for capturing complex, non-linear relationships between design variables and 

performance metrics. In CNFET-based SRAM design, ANNs can predict multiple performance 

characteristics simultaneously [37]. 

Unsupervised learning 

Unsupervised learning algorithms work with unlabeled datasets to identify inherent patterns or groupings 

within the data. Examples include: 

Clustering algorithms (e.g., K-Means): These are used to group similar SRAM designs based on performance 

metrics like stability, power consumption, or leakage current. Clustering can help identify optimal design 

clusters or regions within the design space [38]. 

Principal Component Analysis (PCA) is a dimensionality reduction technique that reduces the number of 

variables under consideration, simplifying the complexity of the design space. PCA can help identify the most 

influential parameters in CNFET SRAM design [39]. 

Reinforcement learning 

RL involves training an agent to make sequential decisions to maximize a reward. RL can optimize SRAM 

design in circuit design by learning the best sequence of design modifications to achieve a target performance 

metric, such as minimizing power consumption or maximizing read/write stability [40]. 

Q-learning: A model-free RL algorithm used to learn the value of actions taken in specific states, useful for 

iterative design optimization tasks where direct supervision is not feasible [41]. 

Deep Q-Networks (DQN): This extension of Q-Learning uses DNN to approximate the optimal action-

value function, optimizing high-dimensional design spaces, such as those encountered in CNFET SRAM 

design [42]. 

Deep learning 

Deep learning is a subset of ML that uses DNNs to model complex patterns and relationships.  

Convolutional Neural Networks (CNNs): Traditionally used in image recognition, CNNs can extract spatial 

hierarchies and patterns in circuit layouts, aiding in optimizing CNFET-based SRAM cells [43]. 
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  Recurrent Neural Networks (RNNs) are useful for time-series prediction tasks. RNNs can predict temporal 

variations in SRAM cell performance, such as degradation over time due to aging effects [44]. 

3.2|Application of Machine Learning in Electronic Design Automation 

ML techniques are increasingly integrated into EDA tools to enhance circuit design and optimization. The 

use of ML in EDA encompasses a range of applications, such as DSE, optimization, and prediction of circuit 

performance. Below are some specific use cases: 

Design space exploration  

DSE involves evaluating various design configurations to identify the optimal solution. ML algorithms like 

Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) can efficiently explore significant and 

complex design spaces by mimicking natural evolution and social behavior, respectively [45]. For instance, 

GAs can optimize CNFET SRAM cell design by iteratively selecting, crossing, and mutating design 

parameters (e.g., channel length, CNT diameter) to converge on the best-performing solution [46]. The 

objective function to be optimized can be formulated as: 

where α, β, γ are weighting factors representing the relative importance of each parameter. 

Circuit performance prediction  

ML models, such as ANNs or Gaussian Process Regressions (GPR), can be trained to predict the 

performance metrics (e.g., delay, power, area) of CNFET-based SRAM cells based on various input design 

parameters [47]. This enables rapid estimation of circuit performance without the need for exhaustive 

simulations. For example, an ANN model can take the following inputs: 

The trained ANN model can accurately predict outputs, significantly reducing the time required for 

performance analysis [48]. 

Optimization of power, performance, and area  

Power, Performance, and Area (PPA) optimization is critical in circuit design. ML algorithms such as RL can 

dynamically adjust design parameters to achieve an optimal balance between PPA metrics [49]. An RL agent 

can be trained to maximize a reward function defined as: 

where: s represents the state (Current design configuration), a represents the action (Modification to design 

parameters), and w1, w2, and w3 are weighting factors. 

Layout optimization and physical design  

ML models and intense learning techniques like CNNs can assist in optimizing the layout and physical design 

of CNFET-based SRAM cells by identifying optimal transistor placements and routing paths. This reduces 

parasitic effects and improves overall cell performance [50]. A CNN model can be trained on a dataset of 

layout designs, learning the spatial correlations between component placements and performance metrics. 

The output can guide designers in choosing the most efficient layout configuration. By integrating ML 

algorithms into the EDA process, designers can automate and enhance the optimization of CNFET-based 

Objective Function α Power Consumption

β Read Stability γ Access Time,

= 

+  − 
 (2) 

Input vector: ch ch th dd ox[L ,W ,V ,V , ].   

Output: Power,De .lay,SNM[ ]   

1

2 3

R(s,a) w (Reduction in Power)

w (Improvement in Stability) w (Increase in Area),

= 

+  − 
 (3) 
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  SRAM cells, leading to better-performing, power-efficient, and stable circuits. The following section will delve 

into specific case studies where these ML techniques have been successfully applied to optimize CNFET 

SRAM designs. 

4|Machine Learning Models for Carbon Nanotube Field-Effect 

Transistor-Based Static Random-Access Memory Design 

Optimization 

In this section, we will explore various ML models that are particularly effective for optimizing the design of 

CNFET-based SRAM cells. We will discuss the application of supervised, unsupervised, RL, and deep 

learning approaches, highlighting their mathematical formulations and specific use cases in design 

optimization. 

4.1|Supervised Learning Algorithms 

Supervised learning algorithms are particularly useful for predicting performance metrics of CNFET-based 

SRAM cells based on input design parameters. These models are trained on datasets containing labeled 

examples, where the input features (Such as transistor dimensions, supply voltage, etc.) are associated with 

known output performance metrics (Like power consumption, delay, and stability). 

Linear regression and support vector machine 

Linear regression: Linear regression can establish a linear relationship between the design parameters (e.g., 

channel length, threshold voltage) and performance metrics (e.g., delay, power). For instance, linear regression 

can model the impact of increasing the channel length Lch of a CNFET on the overall power consumption P 

of an SRAM cell. The general form of the linear regression model is: 

where: 

I. P represents the predicted power consumption. 

II. β0, β1, β2, … are the regression coefficients. 

III. Lch, Vth, and Wch are the design parameters (Channel length, threshold voltage, and channel width). 

IV. ε is the error term. 

By minimizing the error term ε through least squares fitting, the regression model can provide insights into 

the influence of individual design parameters on performance metrics. This can guide optimization by 

indicating which parameters significantly impact power or delay. 

SVM: SVMs can classify SRAM cell designs into different categories based on their performance 

characteristics (e.g., stable vs. unstable designs). The SVM algorithm aims to find the optimal hyperplane that 

maximizes the margin between different classes in a high-dimensional feature space. The general form of the 

SVM model is: 

I. w is the weight vector of the hyperplane. 

II. C is the regularization parameter. 

0 1 ch 2 th 3 chP β β L β V β W= + + + ++  (4) 

N

2

i

i 1

1
minimize w C ξ .

2 =

+ ‖ ‖  

s.t. 

i i i iy (w x b) 1 ξ , ξ 0. +  −   

(5) 
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  III. ξi are the slack variables for soft margin classification. 

IV. yi are the class labels, and xi are the feature vectors representing design parameters. 

SVM can help optimize CNFET SRAM designs by categorizing them based on performance metrics and 

identifying the optimal class boundaries [51], [52]. 

Artificial neural network  

ANNs are highly effective for modeling complex non-linear relationships between CNFET design parameters 

and performance outcomes, such as power consumption, delay, and stability. They are capable of learning 

from data and generalizing to unseen design configurations. An ANN consists of multiple layers (Input, 

hidden, and output layers) with interconnected neurons. The mathematical representation of a simple 

feedforward neural network with one hidden layer can be given by 

where: 

I. x is the input vector representing design parameters. 

II. W1 and W2 are weight matrices for the hidden and output layers. 

III. b1, and b2 are bias vectors. 

IV. σ(.) is the activation function (e.g., ReLU, Sigmoid). 

V. ŷ  is the predicted output (e.g., power consumption). 

The ANN can be trained using backpropagation to minimize the Mean Squared Error (MSE) between the 

predicted and actual performance metrics: 

where: 1) yi is the actual value, 2) ŷ  is the predicted value, and 3) n is the number of training samples. This 

approach can predict performance metrics for new CNFET SRAM designs, accelerating the optimization 

process [53]. 

4.2|Unsupervised Learning Algorithms 

Unsupervised learning algorithms can identify patterns or clusters within design data without requiring labeled 

datasets. These methods are particularly useful for grouping similar design configurations based on 

performance characteristics. 

K-Means clustering: K-Means clustering can partition CNFET SRAM designs into distinct groups based on 

similarities in design parameters or performance metrics (e.g., leakage current, read stability). The objective 

of K-Means is to minimize the Within-Cluster Sum of Squares (WCSS): 

where: 

I. K is the number of clusters. 

II. xi is the data point representing a design. 

III. μk is the centroid of cluster Ck. 

1 1

2 2

h σ(W x b ),

ŷ W h b ,

= +

= +
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1
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  By clustering designs with similar performance metrics, designers can identify regions in the design space 

likely to yield optimal results. 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN): DBSCAN is useful for identifying 

clusters of high-density points in the design space, representing optimal or near-optimal design configurations. 

DBSCAN defines clusters based on the density of points and identifies noise (Outliers). It requires ε 

(Maximum distance between points in a cluster) and MinPts (Minimum number of points to form a cluster). 

DBSCAN can effectively handle noise in design data and identify dense regions that represent promising 

design configurations [54]. 

4.3|Reinforcement Learning for Design Optimization 

RL techniques can be employed to optimize design parameters by learning from iterative exploration and 

feedback [55], [56]. 

Policy-based methods (e.g., policy gradients): Policy-based RL methods learn a parameterized policy π(a|s;θ) 

that directly maps design states s (e.g., current parameter values) to actions a (e.g., adjustments to parameters) 

to maximize a cumulative reward. The objective is to maximize the expected cumulative reward: 

where: 

I. θ represents policy parameters. 

II. γ is the discount factor. 

III. -rt is the reward at time step t. 

Policy gradients can be used to find an optimal policy that improves the performance of CNFET-based 

SRAM designs over time through trial and error. 

Value-based methods (e.g., Q-learning): Value-based methods like Q-learning aim to learn the optimal value 

function Q(s, a) that estimates the maximum cumulative reward achievable from a state s by taking an action. 

The Q-learning update rule is: 

where: 

I. α is the learning rate. 

II. r is the immediate reward. 

III. s' is the next state. 

Q-learning can optimize SRAM design parameters by iteratively adjusting them to maximize performance 

metrics. 

4.4|Deep Learning Approaches 

Deep learning models like CNNs and RNNs can extract complex features from design data and predict long-

term reliability and performance metrics. 

CNN: CNNs can be used to analyze spatial patterns in the design parameter space, such as spatial correlation 

in transistor layouts. A CNN consists of convolutional layers that apply filters to input data to detect features: 

T

t

π t

t 0

J(θ) γ r ,
=

 
=  

 
  (10) 

 aQ(s,a) Q(s,a) α r γ max Q(s ,a ) Q(s,a) ,
  + + −  (11) 
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where: 

I. xl
ij is the convolutional layer output at position (i, j). 

II. wl
mn are the weights of the filter. 

III. σ is the activation function. 

CNNs can predict which SRAM designs will have favorable performance characteristics based on spatial data 

patterns [57], [58]. 

RNN: RNNs are suitable for predicting temporal reliability or degradation over time due to their capability 

to handle sequential data [59]. An RNN computes hidden states that capture temporal dependencies: 

where: 

I. ht is the hidden state at time t. 

II. xt is the input at time t. 

III. Wh, Uh are weight matrices. 

IV. σ is the activation function. 

RNNs can model the long-term reliability of CNFET-based SRAM designs, allowing designers to optimize 

for durability and stability over time. By leveraging these ML models, the design and optimization of CNFET-

based SRAM cells can be significantly accelerated, leading to designs that offer enhanced performance, 

reliability, and energy efficiency [60]. 

5|Case Studies and Comparative Analysis 

This section delves into two specific case studies that highlight the application of ML algorithms in optimizing 

CNFET-based SRAM cell designs. The first case study focuses on enhancing SRAM stability, while the 

second addresses reducing power consumption. A detailed comparative analysis follows to evaluate the 

strengths and weaknesses of different ML models in various design optimization scenarios [36], [61]–[65]. 

5.1|Case Study 1. Optimization of Static Random-Access Memory Stability 

Using Machine Learning Algorithms 

Stability is a paramount design objective for CNFET-based SRAM cells, particularly when aiming for reliable 

operation under scaled-down technology nodes. Stability optimization maximizes the SNM while balancing 

parameters like delay and power consumption. 

Objective  

To maximize the SNM of a 6T CNFET-based SRAM cell while maintaining acceptable read and write delays. 

Machine learning algorithms employed  

Random Forest (RF): Utilized to predict the SNM based on input design parameters (Such as channel length, 

threshold voltage, etc.).  

GA: Used to optimize the design parameters to achieve the highest possible SNM with minimal delay trade-

offs. 

Optimization approach  

l l 1 l l

ij (i m)( j n) mn

m,n

x σ x w b ,−

+ +

 
=  + 

 
  (12) 

t h t h t 1 hh σ(W x U h b ),−= + +  (13) 
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  Data preparation: A dataset of simulated SRAM designs was generated using HSPICE, varying key parameters 

like channel length (Lch), threshold voltage (Vth), channel width (Wch), and supply voltage (Vdd). These 

parameters were chosen because they significantly impact SRAM stability. 

RF model training: The RF model was trained to predict SNM values based on the input features. The model's 

feature importance analysis indicated that Vth and Lch were the most influential factors in determining SNM. 

GA optimization: The GA was initialized with a diverse population of SRAM designs, and a fitness function 

was defined to maximize SNM while penalizing configurations with excessive delay. The algorithm iteratively 

evolved the population over 150 generations to converge to an optimal design. 

The optimal design achieved a 15% increase in SNM compared to the baseline, with only a 5% increase in 

delay. The GA's convergence demonstrated the effectiveness of 

combining predictive modeling (RF) with heuristic optimization (GA) for stability optimization. 

5.2|Case Study 2. Power Consumption Reduction in Carbon Nanotube Field-

Effect Transistor-Based Static Random-Access Memory Design 

Minimizing power consumption in CNFET-based SRAM cells is crucial, especially for portable and battery-

operated devices. This case study explores ML techniques to optimize power efficiency while maintaining 

acceptable performance levels. 

Objective  

To minimize static and dynamic power consumption in an 8T CNFET-based SRAM cell while ensuring a 

minimum acceptable speed and stability. 

Machine learning techniques applied 

SVM: Applied for classification to identify feasible low-power designs based on initial constraints. 

DNN: Employed for regression tasks to predict power consumption metrics and guide the optimization 

process. 

PSO: Utilized for multi-objective optimization to fine-tune design parameters based on DNN predictions. 

Optimization approach 

Data collection: The dataset was generated by simulating numerous SRAM configurations using Cadence 

Virtuoso, with variations in gate length, oxide thickness, Vdd, and temperature. 

SVM Classification: An SVM with a Radial Basis Function (RBF) kernel was trained to classify designs as 

"Low Power" or "High Power," achieving an 89% classification accuracy. 

DNN Regression: A DNN with three hidden layers was trained to predict static and dynamic power 

consumption, achieving a Mean Absolute Percentage Error (MAPE) of 3.5%. 

PSO Optimization: PSO was used to search for the optimal parameter set to minimize power consumption 

while maintaining performance constraints. 

The optimized SRAM design achieved a 22% reduction in static power and a 17% reduction in dynamic 

power, maintaining desired speed and stability metrics. PSO effectively refined the parameter search space 

based on DNN predictions. 

5.3|Comparative Analysis of Different Machine Learning Models 

This section compares the strengths and weaknesses of the different ML algorithms used in the two case 

studies and evaluates their effectiveness in various CNFET-based SRAM design optimization scenarios. The 

results of these comparisons are shown in Tables 1-3.  
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  Table 1. Comparison of machine learning algorithms for static random-access memory stability optimization. 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparative analysis: Effectiveness of machine learning algorithms in power optimization. 

 

ML Model Strengths Weaknesses Performance in 
Stability Optimization 

RF High interpretability, robust to 
overfitting, good for feature 
importance ranking 

Requires large datasets, less 
effective for high-dimensional data 

Effective for predicting 
SNM, identifying key 
parameters 

GA Effective for global optimization, 
handles multi-objective problems 
well 

Computationally expensive, slow 
convergence in complex spaces 

Achieved significant 
SNM improvement but 
slow convergence 

SVM Strong for binary classification 
tasks, handles non-linear 
separations well 

Sensitive to parameter tuning, less 
effective with noisy data 

Suitable for classifying 
feasible SRAM 
configurations 

DNN Excellent at capturing complex, 
non-linear relationships with high 
accuracy 

Requires substantial training data, 
risk of overfitting, computationally 
intensive 

Effective for predicting 
performance metrics, 
power consumption 

PSO Fast convergence, suitable for 
continuous optimization 
problems 

It may get stuck in local minima 
and requires good parameter 
initialization 

Efficient in power 
optimization, balancing 
multiple objectives 

Criteria RF GA SVM DNN PSO 

Computational 
efficiency 

Moderate 
(Training and 
inference fast) 

Low 
(Computationally 
intensive 
optimization) 

High (Fast 
classification) 

Low to moderate 
(Depending on 
model size) 

High (Fast 
convergence, 
low compute 
cost) 

Accuracy High (For 
initial 
predictions) 

High (After 
convergence) 

Moderate (Depends 
on data quality) 

Very high (With 
sufficient data) 

High (Given 
good initial 
parameters) 

Ease of 
implementation 

Moderate 
(Requires 
parameter 
tuning) 

Moderate to high 
(Complex 
optimization setup) 

High 
(Straightforward 
binary classification) 

Low to moderate 
(Complex 
models, training) 

Moderate 
(Requires 
domain 
expertise) 

Data 
Requirements 

Large datasets 
needed for 
training 

Moderate (Depends 
on fitness function 
design) 

Low to Moderate 
(Small to medium 
datasets) 

Very High 
(Large training 
datasets 
required) 

Moderate 
(Sufficient 
initial samples 
needed) 

Scalability Moderate 
(Scales well 
with data 
volume) 

Low (Difficult to 
scale due to 
computational cost) 

High (Scales well 
with additional 
features) 

Moderate to 
High (Can scale 
with neural 
architecture) 

High 
(Adaptable to 
different scales) 

Interpretability High (Provides 
feature 
importance) 

Low (Black-box 
nature) 

Moderate to High 
(With linear/non-
linear kernels) 

Low (Complex 
to interpret 
neural weights) 

Moderate 
(Depends on 
implementation 
details) 
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  Table 3. Summary of machine learning models' performance across case studies. 

 

 

 

 

 

 

5.4|Detailed Observations and Insights 

Trade-offs in model selection: 

I. RF is useful for initial exploration and feature selection due to its interpretability, but it is less suited for 

high-dimensional optimization tasks without additional heuristic methods. 

II. GA is powerful for global optimization but may require extensive computational resources, especially in 

highly complex design spaces. 

III. SVM provides fast, reliable classification but may not capture complex relationships unless paired with 

more robust models. 

IV. DNN offers high accuracy in predicting complex non-linear outcomes but requires careful tuning and large 

datasets to avoid overfitting. 

V. PSO is efficient for continuous optimization tasks and can complement predictive models by fine-tuning 

design parameters based on their outputs. 

Combining models for enhanced results: 

I. Combining ML models like RF with GA or DNN with PSO can leverage their strengths, such as using RF 

for rapid feature selection and GA for extensive parameter optimization. 

II. Hybrid approaches, where different models handle different aspects of the design process (e.g., SVM for 

initial classification and PSO for optimization), effectively balance performance metrics like speed, 

accuracy, and power consumption. 

6|Challenges and Future Directions 

Numerous opportunities have arisen with the advancement of CNFET technology and the growing interest 

in using ML techniques for SRAM design optimization. However, researchers and engineers must address 

several challenges. This section outlines the primary obstacles in applying ML to CNFET-based SRAM 

design, followed by a discussion of future trends and emerging techniques in this interdisciplinary domain. 

6.1|Challenges in Applying Machine Learning to Carbon Nanotube Field-

Effect Transistor-Based Static Random-Access Memory Design 

The integration of ML models into CNFET-based SRAM design presents several unique challenges, which 

stem from both the technology's complexity and the limitations of current ML approaches. 

Data availability and quality  

One of the primary challenges in applying ML to CNFET-based SRAM design is the availability of high-

quality datasets. Extensive datasets of simulated or experimental SRAM designs with varied parameters (e.g., 

transistor dimensions, threshold voltages, supply voltages) are required to train ML models effectively. These 

datasets should cover various operational conditions, including temperature variations, process variations, 

and different workload scenarios. 

Optimization Goal Best Performing ML Model Rationale 

SRAM Stability 
Optimization 

Combination of RF + GA RF provides insight into key parameters 
affecting SNM, while GA effectively explores 
the global design space for optimal solutions. 

Power Consumption 
Reduction 

Combination of SVM + 
DNN + PSO 

SVM quickly identifies feasible low-power 
configurations, DNN accurately predicts 
power metrics, and PSO efficiently fine-tunes 
the design. 
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  Challenge: CNFET technology is still in the research phase, and experimental data is relatively scarce 

compared to traditional MOSFET technology. Simulation tools for CNFETs, such as HSPICE or Cadence, 

are computationally intensive, limiting the generation of large datasets. 

Solution directions: Developing efficient surrogate models to approximate the behavior of CNFETs can 

reduce the computational load associated with simulations. Techniques like generative models (e.g., variational 

autoencoders or GANs) could create synthetic datasets that mimic real design scenarios. 

Model Interpretability 

ML models, intense learning approaches, are often considered "black-box" models. This lack of 

interpretability can be problematic in the highly controlled and precise environment of circuit design, where 

understanding the relationship between input parameters and output performance metrics is critical. 

Challenge: Engineers must understand how specific parameters (e.g., channel length, gate capacitance) 

influence performance metrics (e.g., power consumption, SNM). Complex ML models like DNNs do not 

provide direct insights into these relationships. 

Solution directions: Techniques like SHapley Additive Explanations (SHAP) and Local Interpretable Model-

agnostic Explanations (LIME) can improve model interpretability by providing insights into each feature's 

contribution to the final prediction. 

Another potential direction is the integration of simpler, more interpretable models such as decision trees or 

RFs alongside more complex ML methods for optimization tasks, balancing accuracy with transparency. 

Computational complexity  

Optimizing CNFET-based SRAM cells with ML techniques can be computationally expensive due to the vast 

parameter search space and the need for iterative simulations or optimizations. This computational burden is 

further compounded when exploring multi-objective optimization problems (e.g., power, delay, and stability 

trade-offs). 

Challenge: The high computational cost associated with training models and running optimization algorithms 

for large-scale designs limits the practical application of ML in real-world environments. 

Solution directions: Distributed computing and cloud-based platforms can be leveraged to parallelize the training 

and optimization processes.  

In addition, model compression techniques, such as pruning or quantization, can reduce the computational 

overhead of using large neural networks without significantly sacrificing accuracy. 

Integration with existing electronic design automation tools  

Integrating ML techniques into existing EDA workflows for CNFET-based SRAM designs remains a 

significant challenge. EDA tools such as Cadence, Synopsys, and HSPICE are traditionally used for physical 

layout, timing analysis, and verification, but most do not natively support ML-based design optimization. 

Challenge: The lack of a seamless interface between ML frameworks (e.g., TensorFlow, PyTorch) and EDA 

tools makes it difficult for designers to apply ML-driven optimizations in their existing workflows. 

Solution directions: Future development of specialized plugins or APIs to integrate ML models directly into 

EDA tools could streamline the design process. For instance, ML models could be embedded within the 

synthesis and simulation steps, allowing real-time optimization as part of the standard design flow. 

6.2|Future Trends in Machine Learning for Circuit Design Optimization 

Despite the challenges, ML-based design optimization for CNFET-based SRAM cells holds immense promise 

for future research and practical applications. This section explores emerging trends and potential 

advancements in the field. 
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  Emerging machine learning algorithms for circuit design  

As ML continues to evolve, new algorithms and frameworks are being developed to address the specific needs 

of circuit design. 

RL: RL has shown significant promise in autonomous decision-making and optimization problems. In 

CNFET-based SRAM design, RL could optimize circuit parameters in a dynamic, iterative fashion, where the 

system learns to optimize for multiple objectives (e.g., power, delay, area) by interacting with the environment. 

Federated Learning (FL): FL is a decentralized ML approach that allows models to be trained across multiple 

devices without sharing raw data. This can be particularly beneficial in CNFET-SRAM optimization, where 

design data from different fabrication plants can improve model accuracy while maintaining data privacy. 

Hybrid machine learning models  

Hybrid ML models, which combine the strengths of different algorithms, are emerging as a powerful tool in 

circuit design optimization. 

A hybrid approach combining RL for dynamic parameter tuning and GA for global exploration could achieve 

better design outcomes for CNFET-based SRAM cells by efficiently navigating the complex design space 

while minimizing computational overhead. Let’s assume a fitness function F(x) for optimizing the delay and 

power consumption of an SRAM cell: 

where w1 and w2 are weighting factors. A hybrid RL-GA algorithm can optimize this function by: 

I. Using RL to adjust the parameters x dynamically. 

II. Utilizing GA to explore different initial configurations based on the fitness function F(x). 

Quantum computing for machine learning in circuit design  

Quantum computing is poised to revolutionize various fields, and its integration with ML could provide 

significant advances in circuit design optimization. 

Potential applications: Quantum computing could dramatically reduce the time required for simulating 

complex circuits, such as CNFET-based SRAM cells. By leveraging Quantum Machine Learning (QML), 

designers could solve optimization problems that are currently computationally intractable using classical 

approaches. 

Quantum Support Vector Machines (QSVMs) and Quantum Neural Networks (QNNs) could be applied to 

classify and optimize SRAM designs much faster than their classical counterparts, especially when dealing 

with high-dimensional parameter spaces. 

Automated design space exploration 

As the complexity of CNFET-based SRAM designs increases, automated DSE tools that leverage ML will 

become indispensable. These tools will automate the exploration of large design spaces, significantly reducing 

the time needed for optimization. 

Automated DSE: By integrating ML models into EDA workflows, automated DSE could evaluate millions 

of design variations in parallel. Techniques like Bayesian optimization could efficiently search for optimal 

design parameters by balancing exploration and exploitation of the design space. 

Sustainability and energy-efficient design  

Future research in ML-driven design optimization for CNFET-based SRAMs will increasingly focus on 

sustainability and energy efficiency. The growing demand for low-power, environmentally friendly devices 

will drive the development of optimization algorithms that prioritize energy efficiency without sacrificing 

performance. 

1 2F(x) w delay(x) w power(x),=  +   (14) 
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  Green computing trends: ML models designed to optimize CNFET-based SRAM cells for low power 

consumption will be aligned with green computing initiatives, further emphasizing the importance of 

developing energy-efficient circuits. 

Despite the challenges of data availability, computational complexity, and integration into existing design 

tools, ML has shown tremendous potential for optimizing CNFET-based SRAM designs. Future research 

will likely focus on developing more interpretable, efficient, and integrated ML models. Emerging trends such 

as hybrid models, RL, and quantum computing will redefine the landscape of circuit design optimization, 

paving the way for more advanced and efficient CNFET-based SRAM technologies. 

7|Conclusion 

The application of ML to the design optimization of CNFET-based SRAM cells offers significant 

advancements in stability, power efficiency, and performance. Designers can efficiently explore complex 

design spaces and address multi-objective optimization challenges by leveraging algorithms like neural 

networks, RL, and SVM. ML models enable the fine-tuning of SRAM parameters, reducing power 

consumption, improving stability, and better performance, especially in low-power applications such as IoT 

devices. The transformative potential of ML in SRAM design is clear, as it automates traditionally manual and 

time-consuming processes. ML accelerates the design process and allows for the discovery of novel solutions 

that maximize performance while minimizing costs. With the future integration of quantum computing and 

advanced ML techniques, the role of ML in optimizing CNFET-based SRAM cells is expected to grow, 

driving further innovation in the design of next-generation electronic systems. 
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