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1|Introduction 

The Internet of Things (IoT) refers to the growing network of interconnected devices that can communicate 

with each other and exchange data. It is an ever-increasing technology in many applications, such as smart 

cities, smart transportation systems, cloud computing, and smart medical care. This new platform provides 

communication between many heterogeneous mobiles or fixed systems in a way that no human intervention 

exists [1]. Due to the ever-increasing progress of the IoT and its diverse applications, a considerable volume 

of traffic has been created. 

A Denial-of-Service (DoS) attack refers to a cyber-attack in which an assailant tries to disrupt the regular 

operations of a system or network by inundating it with an excessive amount of traffic or requests. 

Consequently, the system may become inaccessible or unresponsive to authorized users. IoT devices are 

particularly vulnerable to DoS attacks due to their limited processing power and memory, lack of proper 
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  security measures, and the sheer number of devices connected to the network. The Distributed Denial of 

Service (DDoS) [2] in IoT networks describes an attack that intends to disrupt server availability by flooding 

the communication channel with fake requests from multiple IoT devices. Due to notable instances of server 

takedowns in recent times, safeguarding against IoT DDoS attacks has become a pressing research priority. 

IoT DDoS attacks can have serious consequences, such as disrupting critical infrastructure, causing financial 

losses, and compromising sensitive data. Therefore, there is a need for intelligent detection systems that can 

quickly and accurately identify and mitigate such attacks to ensure the security and reliability of IoT networks. 

The growing number of IoT devices, diverse traffic patterns [3], [4] and malicious traffic caused by deliberate 

attacks necessitate the need to classify the traffic of IoT applications. Although the classification of network 

traffic has been one of the topics of interest since the early stages of the Internet, the growing development 

of various applications in the IoT has led to the demand for a more accurate classification of network traffic 

[5].  

The traffic of an IoT network includes various data flows. In addition, there are also sources of traffic attacks 

that increase this traffic, which makes traffic classification a very challenging and important task. Therefore, 

security is one of the most fundamental areas that specifically benefit from network traffic classification [6]. 

Most of the research on network traffic classification has been published in Internet Protocol (IP) networks. 

Still, IoT traffic is very different from other types of network traffic because it follows an irregular pattern 

and unpredictable network behavior [7].  

Researchers have proposed various methods and techniques to classify network traffic. The earliest solution 

relied on packet port-based classification but became ineffective for applications with port randomisation 

techniques [8]. Later, Deep Packet Inspection (DPI) of network traffic content filled the gap in the port-based 

solution [9]. However, this method also showed problems with encrypted network traffic. Recently, the use 

of Machine Learning (ML) algorithms has increased in the literature to classify IoT network traffic without 

needing access to port numbers or packet contents. 

Our paper focuses on using supervised classification techniques to distinguish network traffic. Specifically, 

we concentrated on the deep learning approach used by Feedforward Neural Network (FNN) and assessed 

its effectiveness by applying three methods, namely Support Vector Machines (SVM), Random Forests (RFs), 

and Gradient Boosting (GRB). To enhance their performance, we utilised cross-validation to adjust the 

hyperparameter values of SVM, RF, and GRB. To evaluate the effectiveness of these techniques, we measured 

their accuracy, precision, recall, and F1_score using the IoT-23 dataset, a novel dataset containing both benign 

and malicious network captures from various IoT devices.  

The proposed methodology demonstrated superior performance in detecting DDoS attack patterns 

compared to standard ML methods. It exhibited comparable accuracy but stood out with significantly higher 

precision, especially in datasets with high dimensions and imbalanced data. Moreover, our approach achieved 

these results faster than traditional methods, making it more efficient. 

Section 2 provides a concise review of related works. Section 3 describes the proposed methodology for 

addressing the IoT DDoS classification problem. Section 4 presents the method's implementation and 

evaluation. Finally, Section 5 concludes the paper and offers recommendations based on the findings. 

 2|Related Work 

Due to the severe danger that DDoS attacks pose to many IoT networks, numerous DoS detection and 

prevention methods have been suggested by researchers to classify network traffic. These classifications are 

compared regarding the accuracy, minimum loss, throughput, required computing resources, and speed [10]. 

These approaches can generally be categorised as packet port-based classification, DPI of network, and ML-

based approaches. However, most existing methods have limitations that can affect their effectiveness in 

detecting such attacks. In this section, we discuss some of the negative points of the earliest solutions and 

highlight previous studies that have addressed them. 
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  2.1|Port-Based Methods 

The earliest methodology for traffic classification is port-based classification, which uses the Transmission 

Control Protocol (TCP)/User Datagram Protocol (UDP) headers of packets to gather information about port 

numbers. After determining the port number, the traffic is classified by comparing the allocated TCP/UDP 

port number with the extracted port number. This method is the fastest and simplest for traffic classification 

[11]. Port-based methods use TCP/UDP headers to identify traffic, but they have limitations due to modern 

applications using unregistered or randomly assigned port numbers to evade detection. Encryption and 

dynamic allocation of port numbers also reduce the effectiveness of this method, and tunnelling techniques 

further decrease its reliability. A study found that port-based classification achieved only 30-70% accuracy 

[11]. 

2.2|Payload-Based Methods 

Packet inspection inspects the communication flow [8] and identifies well-known patterns within packets. 

This method is called DPI and has shown reasonable detection rates. However, DPI has been found to have 

issues when dealing with encrypted network traffic. 

2.3|Machine Learning-Based Approaches 

ML algorithms have become increasingly popular in the literature to classify IoT network traffic without 

relying on port numbers or packet contents. In these methods, the statistical characteristics of the data are 

extracted, which indicate the behaviour of a specific protocol or the flows of an application. Supervised, 

unsupervised, and semi-supervised ML methods have been effective in traffic classification, although each 

has strengths and weaknesses. Limitations of port-based and payload-based methods can be addressed more 

effectively using ML-based techniques [12]. 

This section will present research on utilising ML methods to classify IoT network traffic. 

Khedkar and AroulCanessane [13] used the SVM algorithm to distinguish between normal and malicious 

traffic for IoT network classification. A confusion matrix, Receiver Operating Characteristic (ROC) curve, 

and classification report were utilised to evaluate the model's effectiveness. Santos et al. [14] utilised a 

supervised ML algorithm called RF along with content inspection of packets to detect network traffic. The 

study employed cross-validation and hold-out techniques, and the outcome displayed an accuracy of 

approximately 99%. Bikmukhamedov and Nadeev [15] examined the efficacy of straightforward models, such 

as Logistic Regression, SVM with a linear kernel, and Decision Tree, in the context of multiclass classification 

of IoT traces, considering careful feature engineering for real-world deployment purposes. Kumar et al. [16] 

compared ML algorithms using useful features extracted from IoT network traffic. A public dataset was 

utilised for this purpose. The researchers employed well-known ML algorithms to classify IoT traffic, and the 

effectiveness of these algorithms was evaluated comparatively based on criteria such as classification accuracy, 

speed, and training time.  

Alzahrani and Alzahrani [3], Tahaei et al. [4], and Kumar et al. [16] had additional research, including review 

studies, which have thoroughly explored a diverse set of datasets and a broad spectrum of ML models. 

Shaaban et al. [17] introduced a Convolutional Neural Network (CNN) technique to accurately identify and 

classify DDoS traffic as either normal or malicious. The approach achieved 99% accuracy across two datasets 

and is compared to other classification algorithms like decision trees, SVMs, K-nearest neighbours, and neural 

networks. Stoian [18] investigated the effectiveness of ML algorithms in detecting anomalies within IoT 

networks to enhance their security. RF, Naive Bayes (NB), Multi-Layer Perceptron (MLP), SVM, and 

AdaBoost (ADA) were compared. Among these algorithms, the RF algorithm demonstrated the highest 

performance, achieving an accuracy of 99.5%. A new approach called “Deep Defense” was proposed by Yuan 

et al. [19] for detecting DDoS attacks using deep learning. Experimental results showed that the model 

outperformed traditional ML models, reducing the error rate from 7.517% to 2.103% in a larger dataset. 
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  Aswad et al. [20] proposed a DDoS detection model by combining three deep learning algorithms. 

CICIDS2017 was used as an evaluation dataset. The proposed method achieves exceptional accuracy, 99.76%, 

and precision, reaching 98.90%.  

The literature proposes various methods for classifying IoT traffic using various ML algorithms. However, 

the accuracy of these algorithms depends on factors such as the data generated from different IoT devices, 

the features extracted from network traffic, and the location where the IoT system is deployed. Additionally, 

manual selection of features and ML algorithms can lead to errors. Consequently, there is a need to thoroughly 

examine network traffic characteristics and suitable ML algorithms to achieve accurate and optimised IoT 

traffic classification. 

Our suggested approach builds on these previous studies by utilising ensemble methods and cross-validation 

techniques to optimise hyperparameters for IoT DoS attack detection. By doing so, we aim to overcome the 

limitations of existing processes and achieve higher accuracy, precision, recall, and F1 score in detecting DoS 

attacks on IoT networks. 

3|Proposed Methodology  

The proposed methodology for addressing the IoT DDoS classification problem uses a FNN. FNNs [21] are 

a widely used artificial neural network that processes information in a one-directional flow, from the input 

layer through hidden layers to the output layer. FNNs consist of interconnected nodes (Neurons) organised 

into layers, including input, hidden, and output layers. They excel at pattern recognition, regression analysis, 

and classification tasks. FNNs automatically learn and extract complex patterns from data by adjusting the 

weights and biases of the neurons during training, aiming to minimise the difference between predicted and 

actual outputs. This learning process employs algorithms like back-propagation to update network parameters 

based on calculated gradients.  

In our study, our model was developed using the Keras library. The FNN architecture used in this study 

consisted of multiple layers of densely connected nodes, shown in Fig. 1. The model starts with an input layer 

of 24 nodes, followed by three hidden layers with 100, 100, and 40 nodes, respectively. Each hidden layer is 

activated using the sigmoid function and includes a dropout layer with a dropout rate of 0.2, which helps 

prevent overfitting. The final layer of the FNN model has a single node activated using the sigmoid function, 

representing the binary classification output. The model is compiled using the Adam optimiser, and the loss 

function used is binary cross-entropy. The model's accuracy is evaluated as a metric during training and 

evaluation.  

Fig. 1. Feedforward neural network architecture. 

 

 



 Babaiyan et al. | Ann. Proc. Eng. Manag. 2(2) (2025) 101-111 

 

105

 

  Here's an outline of the steps we follow to complete the classification task. We will explain these steps in 

detail in the next section. 

I. Preprocessing of the data 

II. Splitting the data  

III. Training and fitting the model 

IV. Evaluating the model on test data 

4|Implementation and Evaluation 

In this study, we introduced a deep learning-based approach utilising an FNN. We integrated three commonly 

used supervised classification techniques, namely SVM, GRB, and RF, which are known for their high 

accuracy. The FNN, RF, GRB, and SVM models were implemented and trained using appropriate libraries, 

enabling us to evaluate their effectiveness. The following steps were taken in our study: 

4.1|Preprocessing the Data 

Our study utilised the IoT-23 dataset [22], which consists of network traffic data from IoT devices. The 

dataset included 20 captures of malware traffic and 3 of benign traffic. We filtered the data to select specific 

labels, namely 'DDoS' and 'Benign'. Data preprocessing involved handling missing values, scaling or 

normalising features, and encoding categorical variables if necessary. The labels were mapped to numeric 

values, and the input data was normalised using a MinMaxScaler. These steps prepared the filtered samples 

for classification. 

4.2|Splitting the Data 

The dataset was split into training, validation, and test sets to evaluate the model's performance and ensure 

its generalisation capability. This splitting strategy assigns 70% of the data for training the model, 15% for 

evaluating the model's performance during development or hyperparameter tuning, and the remaining 15% 

for the final evaluation of the model on unseen data. This approach allows for a thorough assessment of the 

model's performance on different datasets and ensures a more reliable estimation of its generalisation 

capabilities. We use the train-test-split function from sklearn. Model-selection to divide the preprocessed data 

into training and testing sets. The random-state parameter is set to 42 for consistent reproducibility of the 

split. 

4.3|Training and Fitting the Model 

The FNN model was trained using the fit function with a batch size of 32 and 20 epochs. The model's weights 

and biases were adjusted using the Adam optimiser to minimise the binary cross-entropy loss function. A 

validation dataset was used to evaluate the model's performance after each epoch. The execution time for 

fitting the model was measured using the time module, providing insights into the computational cost of 

training. The fit function was crucial in optimising the model's parameters and improving its classification 

performance. 

4.4|Evaluate the Model on Test Data 

The modelling tasks were conducted on a desktop computer with an Intel(R) Core(TM) i7-1065G7 CPU, 

running at a base frequency of 1.30 GHz and a maximum turbo frequency of 1.50 GHz. The computer has 

8.00 GB of installed RAM, with 7.81 GB usable for our modelling tasks. For the programming aspect, we 

used Python as the primary tool for implementing our models. We chose Jupyter Notebook as our Integrated 

Development Environment (IDE) throughout development. By utilising the computational power of our 

desktop computer, leveraging the capabilities of the Python programming language, and utilising Jupyter 

Notebook as our IDE, we constructed a robust modelling framework for our environmental system. 
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  The algorithm's performance is measured using different metrics [23], [24]. Five commonly used metrics 

assessed the classifier's performance: accuracy, precision, recall, and F-measure. The confusion matrix, a 

widely adopted method, was utilised to measure the accuracy and correctness of the model. This matrix 

comprises two dimensions, "Actual" and "Predicted," with a set of "Classes" present in both dimensions. 

Although the confusion matrix is not a standalone evaluation measure, most criteria are defined based on its 

values. Four terms associated with the confusion matrix were identified: True positives (Predicted and actual 

classes are both true), True negatives (Predicted and actual classes are both false), False positives (Predicted 

class is True, but the actual class is False), and False negatives (Predicted class is false but the actual class is 

true). These terms provide valuable insights for evaluating the classifier's performance in various classification 

scenarios. 

Accuracy in classification problems is the number of correct predictions of the model in proportion to the 

total number of predictions made. Accuracy is a good measure when the target variable classes in the data are 

almost balanced. When the target variable classes are unbalanced, accuracy [25] should never be used as an 

evaluation criterion. The accuracy calculation method is stated in Eq. (1). 

Precision, a metric used to evaluate performance, is calculated by dividing the number of correctly predicted 

positives by the total predicted positives. It is especially valuable when minimising false positives, which is 

more important than false negatives. In IoT attack classification, precision is crucial in reducing false positives. 

False positives occur when normal instances are mistakenly identified as attacks, resulting in unnecessary 

alerts or actions that consume resources and cause disruptions. Maintaining high precision makes the 

identified attacks more accurate and reliable, decreasing the likelihood of false alarms. This study highlights 

the significance of this specific metric. 

Recall (Sensitivity) explains how many positive cases we could predict correctly with our model. It is a useful 

metric in cases where a False Negative is of higher concern than a False Positive. Recall for a label is defined 

as the number of true positives divided by the total number of actual positives.  

F1 Score gives a mixed impression of the precision and recall measures. This metric reaches its maximum 

value when precision is equal to recall. The F1 score is the harmonic mean of precision and recall. 

We compared the performance of the models based on the evaluation metrics and created visualisations and 

summary tables to compare the metrics across the models.  

We employed the "GridSearchCV" technique [26] to identify the optimal parameter values. This technique 

extensively searches a predefined grid of parameter values. This technique systematically combines the model 

with the selected parameters and their specified ranges. We determined the most favourable parameter values 

by utilising the "grid-cv" method, resulting in improved efficiency and more accurate predictions. We adjusted 

their parameters for the fundamental classification methods (RF, GRB, and SVM) according to Table 1, which 

presents the best values obtained through this process. 

Table 1. Hyperparameter extracted values. 

 

Accuracy = (TP + TN)/(TP + TN + FP + FN). (1) 

Precision = TP/(TP + FP). (2) 

Recall = TP/(TP + FN). (3) 

F1 − Score = (2 ∗ Precision ∗ recall)/(precision +  recall). (4) 

Model Hyperparameter Grids Best 
Hyperparameters 

SVM {'C': [0.1, 1, 10, 100], 'kernel': ['linear']}, 
    {'C': [0.1, 1, 10, 100], 'kernel': ['poly'], 'degree': [2, 3, 4]}, 
    {'C': [0.1, 1, 10, 100], 'kernel': ['rbf'], 'gamma': [0.1, 1, 10]}, 
    {'C': [0.1, 1, 10, 100], 'kernel': ['sigmoid'], 'gamma': [0.1, 1, 10], 'coef0': [0.1, 1, 10]} 

'C': 0.1, 
 'kernel': 'linear' 
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  Table 1. Continued. 

 

 

 

 

 

 

 

 

 

The parameters provided to the function are crucial and can significantly influence the method's predictive 

performance. After setting the parameters to appropriate values, we calculate the scores of these models. The 

results obtained from the models are presented in Table 2. 

Table 2. Performance evaluation of bacic classifier. 

  

 
 

 

 

Compared to existing methods in the literature [13], when we utilise ensemble methods like RF and GRB and 

apply cross-validation techniques to optimise hyperparameters for IoT DDOS attack detection, we achieve 

higher performance and reduce overfitting.  

Based on the findings, the SVM, RF, and GRB approaches demonstrate comparable performance across 

various evaluation metrics, including accuracy, precision, recall, and F1 score. These metrics are not calculated 

explicitly for a particular class (e.g., attack or benign) but provide an overall evaluation of the model's 

performance in classifying both classes. All these methods achieve high accuracy scores, as presented in Table 

1. In contrast, the FNN model shows similar accuracy but significantly higher precision than the other models 

(0.99 versus 0.91). This difference suggests that the FNN model accurately identifies true positives while 

minimizing false positives. This specific metric is important, especially when prioritising precise predictions 

for the given problem. 

Considering the lack of discernible performance differences based on the given metrics, it is advisable to 

consider additional factors such as computational complexity, implementation simplicity, and specific 

problem requirements when deciding on the most suitable approach. In addition to evaluating the metrics, 

we also calculated the execution time of the examined methods, considering both the tuning time and fitting 

time. Fig. 2 illustrates the results, visually representing the execution time of each technique. 

Model Hyperparameter Grids Best Hyperparameters 

RF { 
    'n_estimators': [100, 200, 300], 
    'max_depth': [None, 5, 10], 
    'max_features': ['sqrt', 'log2'], 
    'min_samples_split': [2, 5, 10], 
    } 

'max_depth': None, 
 'max_features': 'sqrt',  
'min_samples_split': 2, 
 'n_estimators': 100 
 

GRB { 
    'learning_rate': [0.1, 0.01], 
    'n_estimators': [100, 200, 300], 
    'max_depth': [3, 5, 7], 
    'subsample': [0.8, 1.0] 
    } 

'learning_rate': 0.1, 
 'max_depth': 3, 
 'n_estimators': 100, 
 'subsample': 0.8 

Model  Accuracy Precision Recall F1_Score 

FNN 0.90 0.99 0.80 0.89 

SVM 0.90 0.91 0.90 0.89 

RF 0.90 0.91 0.90 0.89 

GRB 0.90 0.91 0.90 0.89 
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Fig. 2. Comparison of total time consumed. 
 

Considering the FNN model's precision score of 0.99 and its relatively lower time consumption of 13.97 

seconds, it becomes evident that the model demonstrates exceptional precision in generating accurate 

predictions while maintaining efficiency. These findings highlight the model's proficiency in accurately 

detecting true positives and effectively minimising false positives. The superior precision of the FNN model 

makes it a strong candidate for applications where precise predictions are of utmost importance. Moreover, 

the relatively shorter time required for training and evaluation adds to the practicality and efficiency of the 

FNN model. Therefore, the FNN model presents a favourable choice in scenarios where high precision and 

computational efficiency are essential considerations. 

As our primary focus is evaluating the FNN method, we have observed that its performance metrics are 

highly favourable, and it also exhibits faster computation compared to other methods. To assess the accuracy 

and loss of both the training and validation sets and to identify any signs of overfitting, we have provided 

visual representations in Fig. 3 and Fig. 4. These figures demonstrate that the model does not suffer from the 

issue of overfitting.  

Fig. 3. The accuracy of the feedforward neural network-based model. 
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Fig. 4. The loss of the feedforward neural network-based model. 
 

These results demonstrate that our FNN-based approach can detect DDoS attacks in IoT networks in binary 

classification tasks. 

5|Conclusion 

Network traffic classification aims to identify applications or services used in a network. This process offers 

various advantages, such as implementing Quality of Service (QoS) for real-time application traffic, restricting 

specific applications, enforcing regulations, and detecting malicious activity. This study utilizes a supervised 

learning classifier and statistical features to overcome the limitations of Port-based methods and DPI. The 

IoT-23 dataset is employed to analyze both DDoS attacks and benign data. Upon evaluating different ML 

methods, including SVM, RF, GRB, and FNN, it is observed that these methods demonstrate comparable 

levels of accuracy. However, the proposed FNN model stands out with significantly higher precision than the 

other models. The higher precision of the FNN model indicates its effectiveness in identifying true positives 

while minimizing false positives. When selecting the most suitable method, considerations should also be 

given to factors such as computational complexity, implementation simplicity, and the specific requirements 

of the problem. Analyzing the execution time, including tuning time and fitting time, provides valuable 

insights into the computational efficiency of the methods. While SVMs can become computationally 

expensive with large datasets or high-dimensional feature spaces, FNNs can efficiently process and train on 

such data. Furthermore, FNNs can generalize well to unseen data and are less susceptible to overfitting when 

sufficient training data and regularization techniques are employed. 

In summary, a comprehensive assessment of performance metrics, computational complexity, and practical 

considerations is crucial when choosing the most appropriate method for network traffic classification. This 

comprehensive approach ensures optimal results for the specific problem at hand. 
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