New Horizons of Microelectromechanical Systems in the Automotive Industry

Authors

  • Seyed Mohammad Ali Zanjani * Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. https://orcid.org/0000-0001-5329-4899
  • Mohammad Javad Barati Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
  • Ghazanfar Shahgholian Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. https://orcid.org/0000-0003-2774-4694

https://doi.org/10.48314/apem.v2i1.26

Abstract

Microelectromechanical Systems (MEMS) are the integration of mechanical components, sensors, actuators, and electronic devices on a silicon substrate using microchip fabrication technology to realize System on Chip (SoC). With technological advancements, there is a growing need for more precise measurement tools to improve the quantity and quality of devices like automobiles. This demand has driven advancements in microchip manufacturing technology and led to the emergence of MEMS technology with higher precision, smaller sizes, and lower costs. The application of these devices in practical fields such as accelerometers, manifold pressure sensors, gyroscopes, micro-optic sensors, automotive airbags, inertial navigation, guidance and control systems, and motion control systems has resulted in enhanced reliability and safety. MEMS enable the creation of small, efficient, and multifunctional devices for simultaneous monitoring of parameters such as temperature and pressure. In the context of smart, autonomous, and Electric Vehicles (EV), the focus is on pressure sensors, accelerometers, and gyroscopes. This article examines the capability of MEMS accelerometers to measure the parameters of vibration in various vehicle locations, considering the dynamic functions of cars. It also reviews the Tire Pressure Monitoring System (TPMS) and Motor Air Pressure (MAP) sensors.

Keywords:

Microelectromechanical inertial sensors, Micro accelerometer, Microelectromechanical systems, Pressure sensor, Acceleration sensor

References

  1. [1] Esashi, M. (2009). Micro/nano electro mechanical systems for practical applications. Journal of physics: Conference series, 187(1), 012001. IOP Publishing. https://dx.doi.org/ 10.1088/1742-6596/187/1/012001

  2. [2] Maenaka, K. (2008). MEMS inertial sensors and their applications. 2008 5th international conference on networked sensing systems (pp. 71-73). IEEE. https://doi.org/10.1109/INSS.2008.4610859

  3. [3] Zhanshe, G., Fucheng, C., Boyu, L., Le, C., Chao, L., & Ke, S. (2015). Research development of silicon MEMS gyroscopes: A review. Microsystem technologies, 21, 2053–2066. https://doi.org/10.1007/s00542-015-2645-x

  4. [4] Sparks, D. (2013). MEMS pressure and flow sensors for automotive engine management and aerospace applications. MEMS for automotive and aerospace applications, 78–105. https://doi.org/10.1533/9780857096487.1.78

  5. [5] Bhatt, G., Manoharan, K., Chauhan, P. S., & Bhattacharya, S. (2019). MEMS sensors for automotive applications: a review. Sensors for automotive and aerospace applications, 223–239. https://doi.org/10.1007/978-981-13-3290-6_12

  6. [6] Reze, M., & Osajda, M. (2013). MEMS sensors for automotive vehicle stability control applications. In Mems for automotive and aerospace applications (pp. 29–53). Elsevier. https://doi.org/10.1533/9780857096487.1.29

  7. [7] Fanse, T. S. (2022). Micro-electro-mechanical system (MEMS) application and prospects in automobile. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 19, 17–21. https://www.researchgate.net

  8. [8] Ahmed, H. E., Sahandabadi, S., Bhawya., & Ahamed, M. J. (2023). Application of MEMS accelerometers in dynamic vibration monitoring of a vehicle. Micromachines, 14(5), 923. https://doi.org/10.3390/mi14050923

  9. [9] Jin, L. (2021). Applications and prospects of mems sensors in automotive. Journal of physics: Conference series 1884(1), 012010. IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1884/1/012010/meta

  10. [10] Ranji, A. R., Damodaran, V., Li, K., Chen, Z., Alirezaee, S., & Ahamed, M. J. (2022). Recent advances in mems-based 3d hemispherical resonator gyroscope (hrg)—a sensor of choice. Micromachines, 13(10), 1676. https://doi.org/10.3390/mi13101676

  11. [11] Ejeian, F., Azadi, S., Razmjou, A., Orooji, Y., Kottapalli, A., Warkiani, M. E., & Asadnia, M. (2019). Design and applications of MEMS flow sensors: A review. Sensors and actuators a: physical, 295, 483–502. https://doi.org/10.1016/j.sna.2019.06.020

  12. [12] Grant, T., Joshi, V., Taylor, M., Knoefel, F., Sveistrup, H., Bilodeau, M., & Jutai, J. (2014). Measuring sit-to-stand timing variability over time using under mattress pressure sensor technology. 2014 IEEE international symposium on medical measurements and applications (MeMeA) (pp. 1-5). IEEE. https://doi.org/10.1109/MeMeA.2014.6860083

  13. [13] Fanse, T. S. (2021). Design and modification of MEMS based micro cantilever. https://doi.org/10.48550/arXiv.2111.01890

  14. [14] Cheng, C., Lu, Y., Yao, J., Chen, J., Chen, D., & Wang, J. (2024). Development of a new MEMS resonant differential pressure sensor with high accuracy and high stability. Measurement, 226, 114080. https://doi.org/10.1016/j.measurement.2023.114080

  15. [15] Smith, J. H., Montague, S., Sniegowski, J. J., Murray, J. R., Manginell, R. P., McWhorter, P. J., & Huber, R. J. (1996). Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS. Micromachining and microfabrication process technology II (pp. 306-314). SPIE. https://doi.org/10.1117/12.251218

  16. [16] Rajai, P., Ahmed, H., Straeten, M., Xereas, G., & Ahamed, M. J. (2019). Analytical modeling of n-type doped silicon elastic constants and frequency-compensation of Lamé mode microresonators. Sensors and actuators a: physical, 297, 111508. https://doi.org/10.1016/j.sna.2019.07.032

  17. [17] Pickering, P., Twanow, C., & Spicer, D. (2018). Using wafer level packaging to improve sensor manufacturability and cost. Mems packaging; springer: Berlin/Heidelberg, germany.

  18. [18] Bhanap, S. (2021). Micromachining-Blog. https://sarang-bhanap19.medium.com/micromachining-blog-9c685b0c9f71

  19. [19] Pattanaik, P., & Ojha, M. (2023). Review on challenges in MEMS technology. Materials today: Proceedings, 81, 224–226. https://doi.org/10.1016/j.matpr.2021.03.142

  20. [20] Almuramady, N. (2017). Dry friction between rough surfaces of silicon and functionalized gear microelectromechanical systems. [Thesis]. https://www.researchgate.net/publication/321977309

  21. [21] Saxena, A., Singh, M. M., & Singh, V. (2014). The state of art of MEMS in automation industries. Proceedings of the innovative trends in applied physical, chemical, mathematical sciences, and emerging energy technology for sustainable development (APCMET’14), 1–5. https://www.researchgate.net/profile/Dr-Singh-64/publication/263888074

  22. [22] Patel, U. M., & Padole, K. S. (2018). Overview of MEMS sensors in automotive industry. International Journal of Engineering Research & Technology (IJERT), 7(1), 160–163. https://B2n.ir/tr6446

  23. [23] Neul, R., Gómez, U. M., Kehr, K., Bauer, W., Classen, J., Doring, C., … ., & Willig, R. (2007). Micromachined angular rate sensors for automotive applications. IEEE sensors journal, 7(2), 302–309. https://doi.org/10.1109/JSEN.2006.888610

  24. [24] Bogue, R. (2013). Recent developments in MEMS sensors: A review of applications, markets and technologies. Sensor review, 33(4), 300–304. https://doi.org/10.1108/SR-05-2013-678

  25. [25] Asilian, A., & Zanjani, S. M. (2023). Design and fabrication of an amperometric CO gas sensor and a readout circuit using a low-noise transimpedance amplifier to achieve standard analog outputs. AEU-international journal of electronics and communications, 171, 154864. https://doi.org/10.1016/j.aeue.2023.154864

  26. [26] Elhattab, A., Uddin, N., & OBrien, E. (2019). Extraction of bridge fundamental frequencies utilizing a smartphone MEMS accelerometer. Sensors, 19(14), 3143. https://doi.org/10.3390/s19143143

  27. [27] Ru, X., Gu, N., Shang, H., & Zhang, H. (2022). MEMS inertial sensor calibration technology: Current status and future trends. Micromachines, 13(6), 879.

  28. [28] Markel, A. (2013). ABS + ESC: Diagnosis of accelerometers and yaw sensors. https://www.import-car.com/abs-esc-diagnosis-of-accelerometers-and-yaw-sensors/

  29. [29] Zanjani, S. M. A., Dousti, M., & Dolatshahi, M. (2018). High-precision, resistor less gas pressure sensor and instrumentation amplifier in CNT technology. AEU-international journal of electronics and communications, 93, 325–336. https://doi.org/10.1016/j.aeue.2018.06.018

  30. [30] Zanjani, S. M. A., & Parvizi, M. (2021). Design and simulation of a bulk driven operational trans-conductance amplifier based on CNTFET technology. Journal of intelligent procedures in electrical technology, 12(45), 65–76. (In Persian). https://www.sid.ir/paper/389704/

  31. [31] Ahmed, H., Rajai, P., & Ahamed, M. J. (2022). Temperature frequency stability study of extensional mode N-doped silicon MEMS resonator. AIP Advances, 12(1). https://doi.org/10.1063/5.0074694

  32. [32] Tulaev, A. T., Kozlov, A. S., Belyaev, J. V, Loboda, V. V, Bellavin, M. A., & Korotkov, A. S. (2024). MEMS pressure sensors design, simulation, manufacturing, interface circuits: A review. IEEE sensors journal, 24(6), 7395–7405. https://doi.org/10.1109/JSEN.2024.3358951

  33. [33] Abdolkarimi, E. S., & Mosavi, M. R. (2020). A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments. GPS solutions, 24(4), 108. https://doi.org/10.1007/s10291-020-01023-9

  34. [34] Khan, I., Ting, D. S. K., & Ahamed, M. J. (2021). Design and development of a MEMS vibrating ring resonator with inner rose petal spring supports. Microsystem technologies, 27, 985–995. https://doi.org/10.1007/s00542-020-05001-6

  35. [35] Setoudeh, F., & Ghadami, M. (2022). Design and nonlinear analysis of a novel MEMS-based resonator for biomedical applications. International journal of smart electrical engineering, 2(2), 101. https://doi.org/10.30495/ijsee.2022.1951821.1172

  36. [36] Dey, K., Vangety, N., & Roy, S. (2022). Machine learning approach for simultaneous measurement of strain and temperature using FBG sensor. Sensors and actuators a: physical, 333, 113254. https://doi.org/10.1016/j.sna.2021.113254

  37. [37] Yao, G., Li, Y., Shang, Q., & Fan, H. (2023). Research on Temperature Compensation of Optical Fiber MEMS Pressure Sensor Based on Conversion Method. Photonics, 10(1), 22. https://doi.org/10.3390/photonics10010022

  38. [38] Asilian, A., & Zanjani, S. M. (2024). Application of levenberg-marquardt backpropagation algorithm in artificial neural network for self-calibration of deflection type wheatstone bridge circuit in CO electrochemical gas sensor. Majlesi journal of electrical engineering, 18(1), 21–32. https://doi.org/10.30486/mjee.2023.1988651.1157

  39. [39] Piltan, A., Ghodsi, R., & Piltan, M. (2011). Mems technology in automotive industry: Trends and applications. 2011 International Conference on Management of Technology (pp. 7). IRAMOT. https://www.researchgate.net/publication/228327686_

  40. [40] Baker, M., Frank, R., Puhl, L. C., Dabbish, E. A., & Danielsen, M. (1990). Sensing and systems aspects of fault tolerant electronics applied to vehicle systems. SAE transactions, 99, 1220–1229. https://www.jstor.org/stable/44554063

  41. [41] Wang, R., & Wang, J. (2011). Fault-tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles. IEEE transactions on vehicular technology, 60(9), 4276–4287. https://doi.org/10.1109/TVT.2011.2172822

  42. [42] Tabbache, B., Kheloui, A., Benbouzid, M. E. H., Mamoune, A., & Diallo, D. (2014). Research on fault analysis and fault-tolerant control of EV/HEV powertrain. 2014 First international conference on green energy ICGE 2014 (pp. 284-289). IEEE. https://doi.org/10.1109/ICGE.2014.6835436

  43. [43] Tabbache, B., Benbouzid, M. E. H., Kheloui, A., & Bourgeot, J. M. (2013). Virtual-sensor-based maximum-likelihood voting approach for fault-tolerant control of electric vehicle powertrains. IEEE transactions on vehicular technology, 62(3), 1075–1083. https://doi.org/10.1109/TVT.2012.2230200

  44. [44] Wu, C., Sehab, R., Akrad, A., & Morel, C. (2022). Fault diagnosis methods and Fault tolerant control strategies for the electric vehicle powertrains. Energies, 15(13), 4840. https://doi.org/10.3390/en15134840

Published

2025-03-20

How to Cite

New Horizons of Microelectromechanical Systems in the Automotive Industry. (2025). Annals of Process Engineering and Management, 2(1), 48-59. https://doi.org/10.48314/apem.v2i1.26

Most read articles by the same author(s)