Machine Learning-Driven Design Optimization of CNFET-Based SRAM Cells
Abstract
The rapid evolution of nanotechnology has positioned Carbon Nanotube Field-Effect Transistors (CNFETs) as a promising alternative to traditional Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) in the design of low-power, high-performance Static Random-Access Memory (SRAM) cells. However, optimizing the design of CNFET-based SRAM cells to meet stringent requirements, such as stability, power efficiency, and scalability, remains a significant challenge. In this paper, we explore the potential of Machine Learning (ML) algorithms to address these challenges by leveraging their capabilities in complex design optimization tasks. This paper comprehensively reviews various ML models, including supervised, unsupervised, reinforcement, and deep learning. It examines their application in optimizing key performance metrics of CNFET-based SRAM cells. Mathematical models and formulas for design optimization are presented alongside case studies demonstrating ML techniques’ effectiveness in improving SRAM stability and reducing power consumption. Finally, we discuss the challenges of integrating ML into circuit design workflows and propose future research directions, highlighting the transformative potential of ML in shaping the future of CNFET-based SRAM design.
Keywords:
Carbon nanotube field-effect transistor-based static random-access memory, Machine learning optimization, Design automation, Low-power circuits, Circuit stability, Deep learning in circuit design, Electronic design automationReferences
- [1] Kavitha, S., Kumar, C., Fayek, H. H., & Rusu, E. (2023). Design and implementation of CNFET SRAM cells by using multi-threshold technique. Electronics, 12(7), 1–23. https://doi.org/10.3390/electronics12071611
- [2] Gadgil, S., Sandesh, G. N., & Vudadha, C. (2023). Power efficient designs of CNTFET-based ternary SRAM. Microelectronics journal, 139, 105884. https://doi.org/10.1016/j.mejo.2023.105884
- [3] Parvizi, M., & Zanjani, S. M. A. (2020). An efficient, current-mode full-adder based on majority logic in CNFET technology. 2020 10th international conference on computer and knowledge engineering (ICCKE) (pp. 301–305). IEEE. http://dx.doi.org/10.1109/ICCKE50421.2020.9303623
- [4] Chen, R., Chen, L., Liang, J., Cheng, Y., Elloumi, S., Lee, J., … & Todri-Sanial, A. (2022). Carbon nanotube SRAM in 5-nm technology node design, optimization, and performance evaluation—Part I: CNFET transistor optimization. IEEE transactions on very large scale integration (VLSI) systems, 30(4), 432–439. https://doi.org/10.1109/TVLSI.2022.3146125
- [5] Mohammed, M. U. (2019). Novel high performance ultra low power static random access memories (SRAMs) based on next generation technologies [Thesis].
- [6] Patel, P. K., Malik, M. M., & Gupta, T. K. (2020). A novel high-density dual threshold GNRFET SRAM design with improved stability. Microprocessors and microsystems, 73, 102956. https://doi.org/10.1016/j.micpro.2019.102956
- [7] Valluria, A., & Musala, S. (2022). Comparative analysis of CNTFET based SRAM cells. ECS transactions, 107(1), 19177. https://doi.org/10.1149/10701.19177ecst
- [8] Sajjadi, S. A., Sadrossadat, S. A., Moftakharzadeh, A., Nabavi, M., & Sawan, M. (2024). Yield maximization of flip-flop circuits based on deep neural network and polyhedral estimation of nonlinear constraints. IEEE access, 12, 113944–113959. https://doi.org/10.1109/ACCESS.2024.3443343
- [9] Zahoor, F., Jaber, R. A., Isyaku, U. B., Sharma, T., Bashir, F., Abbas, H., … & Hanif, M. (2024). Design implementations of ternary logic systems: A critical review. Results in engineering, 23, 102761. https://doi.org/10.1016/j.rineng.2024.102761
- [10] Alekhya, Y., & Nanda, U. (2022). Investigation of CNTFET based energy efficient fast SRAM cells for edge AI devices. Silicon, 14(14), 8815–8830. https://doi.org/10.1007/s12633-021-01589-0
- [11] Tabrizchi, S., Angizi, S., & Roohi, A. (2022). Design and evaluation of a robust power-efficient ternary sram cell. 2022 IEEE 65th international midwest symposium on circuits and systems (MWSCAS) (pp. 1–4). IEEE. https://doi.org/10.1109/MWSCAS54063.2022.9859306
- [12] Zhang, A. Q., Tosson, A. M. S., Ma, D., Fang, R., & Wei, L. (2023). Stuck-at faults tolerance and recovery in MLP neural networks using imperfect emerging CNFET technology. IEEE journal on exploratory solid-state computational devices and circuits, 9(2), 168–175. https://doi.org/10.1109/JXCDC.2023.3313127
- [13] Kim, Y. B. (2023). A Novel CNFET SRAM-based computing-in-memory design and low power techniques for AI accelerator. https://www.proquest.com/openview/ccaa11e388b9d59e7e674e1a7848cd88/1?pq-origsite=gscholar&cbl=18750&diss=y
- [14] Birla, S., Dargar, S. K., Singh, N., & Sivakumar, P. (2023). Low power designs in nanodevices and circuits for emerging applications. CRC Press. https://doi.org/10.1201/9781003459231
- [15] Zhang, A. Q. (2021). Struck-at fault tolerance with emerging technology RAM in the neurosim MLP neural network system [Thesis]. http://hdl.handle.net/10012/17391
- [16] Islam, A., & Hasan, M. (2011). Power optimized variation aware dual-threshold SRAM cell design technique. Nanotechnology, science and applications, 4, 25–33. https://doi.org/10.2147/NSA.S15719
- [17] Kenarangi, F., & Partin-Vaisband, I. (2021). A single-MOSFET analog high resolution-targeted (SMART) multiplier for machine learning classification. IEEE journal on emerging and selected topics in circuits and systems, 11(4), 816–828. https://doi.org/10.1109/JETCAS.2021.3124940
- [18] Yin, S., Kim, Y., Han, X., Barnaby, H., Yu, S., Luo, Y., … & Seo, J. (2019). Monolithically integrated RRAM-and CMOS-based in-memory computing optimizations for efficient deep learning. IEEE micro, 39(6), 54–63. https://doi.org/10.1109/MM.2019.2943047
- [19] Kenarangi, F., Hu, X., Liu, Y., Incorvia, J. A. C., Friedman, J. S., & Partin-Vaisband, I. (2020). Exploiting dual-gate ambipolar CNFETs for scalable machine learning classification. Scientific reports, 10(1), 5735. https://doi.org/10.1038/s41598-020-62718-0
- [20] Pal, S., Bose, S., Ki, W. H., & Islam, A. (2020). A highly stable reliable SRAM cell design for low power applications. Microelectronics reliability, 105, 113503. https://doi.org/10.1016/j.microrel.2019.113503
- [21] Prakash, P., Sundaram, K. M., & Bennet, M. A. (2018). A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renewable and sustainable energy reviews, 89, 194–203. https://doi.org/10.1016/j.rser.2018.03.021
- [22] Cho, G., Kim, Y. B., Lombardi, F., & Choi, M. (2009). Performance evaluation of CNFET-based logic gates. 2009 IEEE instrumentation and measurement technology conference (pp. 909–912). IEEE. https://doi.org/10.1109/IMTC.2009.5168580
- [23] Hailiang, Z., Yue, H., & Minxuan, Z. (2010). Numerical study of the sub-threshold slope in T-CNFETs. Journal of semiconductors, 31(9), 94005. https://doi.org/10.1088/1674-4926/31/9/094005
- [24] Sankar, P. A. G., & Udhayakumar, K. (2014). MOSFET-like CNFET based logic gate library for low-power application: A comparative study. Journal of semiconductors, 35(7), 75001. https://doi.org/10.1088/1674-4926/35/7/075001
- [25] Su, S. K., Sanchez-Soares, A., Chen, E., Kelly, T., Fagas, G., Greer, J. C., … & Radu, I. P. (2022). Impact of metal hybridization on contact resistance and leakage current of carbon nanotube transistors. IEEE electron device letters, 43(8), 1367–1370. https://doi.org/10.1109/LED.2022.3185991
- [26] Dixit, A., & Gupta, N. (2018). Analysis of different gate dielectric materials in carbon nanotube field effect transistor (CNFET) using optimization technique. 2018 IEEE electron devices kolkata conference (EDKCON) (pp. 354–357). IEEE. https://doi.org/10.1109/EDKCON.2018.8770503
- [27] Arif, S., & Pal, S. (2015). CNFET based 8-t sram cell to improve stability with reduced power consumption. 2015 international conference on advanced computing and communication systems (pp. 1–5). IEEE. https://doi.org/10.1109/ICACCS.2015.7324112
- [28] Madhavi, B. K., & Kishore, K. L. (2012). Low leakage-power sram cell design using CNTFETs at 32nm technology. International conference on advances in communication, network, and computing (pp. 165–171). Springer. https://doi.org/10.1007/978-3-642-35615-5_24
- [29] Zanjani, S. M., & Toghian, P. (2024). Design and simulation of a low-power, universal & multi-mode filter for the commercial FM band in 20-nm CNFETs. Analog integrated circuits and signal processing, 120(1), 9–20. https://doi.org/10.1007/s10470-024-02287-8
- [30] Srinivasan, V., Varshad Venkatraman, R., & Senthil kumar, K. K. (2013). Schmitt trigger based SRAM cell for ultralow power operation- A CNFET based approach. Procedia engineering, 64, 115–124. https://doi.org/10.1016/j.proeng.2013.09.082
- [31] Kureshi, A. K., & Hasan, M. (2009). Performance comparison of CNFET- and CMOS-based 6T SRAM cell in deep submicron. Microelectronics journal, 40(6), 979–982. https://doi.org/10.1016/j.mejo.2008.11.062
- [32] Arif, S., & Pal, S. (2015). Variation-resilient cnfet-based 8T sram cell for ultra-low-power application. 2015 international conference on signal processing and communication engineering systems (pp. 147–151). IEEE. https://doi.org/10.1109/SPACES.2015.7058235
- [33] Kanhaiya, P. S., Lau, C., Hills, G., Bishop, M. D., & Shulaker, M. M. (2019). Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE transactions on electron devices, 66(12), 5375–5380. https://doi.org/10.1109/TED.2019.2945533
- [34] Soni, L., & Pandey, N. (2023). A novel CNTFET based schmitt-trigger read decoupled 12T SRAM cell with high speed, low power, and high Ion/Ioff ratio. AEU-international journal of electronics and communications, 167, 154669. https://doi.org/10.1016/j.aeue.2023.154669
- [35] Kim, Y., Patel, S., Kim, H., Yadav, N., & Choi, K. K. (2021). Ultra-low power and high-throughput SRAM design to enhance AI computing ability in autonomous vehicles. Electronics, 10(3), 1–22. https://doi.org/10.3390/electronics10030256
- [36] Aslam, M. F. (2024). An inverter based OTA with novel tunable pseudoresistor and its application in arrhythmia detection using machine learning algorithms. https://doi.org/10.21203/rs.3.rs-4957694/v1
- [37] Gupta, S. K. (2024). Special topic on physics-based modeling and simulation of materials, devices, and circuits of beyond-CMOS logic and memory technologies for energy-efficient computing. IEEE journal on exploratory solid-state computational devices and circuits, 9(2),1-3. https://doi.org/10.1109/JXCDC.2023.3340557
- [38] Singh, J., & Singh, D. (2024). Applications of AI/ML algorithms in VLSI design and technology. In Integrated devices for artificial intelligence and VLSI (pp. 157–191). Wiley Online Library. https://doi.org/10.1002/9781394205158.ch7
- [39] Maqbool, M., Sharma, V. K., & Kaushik, N. (2024). CNTFET-based SRAM cell design using INDEP technique. E-prime-advances in electrical engineering, electronics and energy, 7, 100477. https://doi.org/10.1016/j.prime.2024.100477
- [40] Elangovan, M., Sharma, K., Sachdeva, A., & Gupta, L. (2024). Read improved and low leakage power CNTFET based hybrid 10t SRAM cell for low power applications. Circuits, systems, and signal processing, 43(3), 1627–1660. https://doi.org/10.1007/s00034-023-02529-6
- [41] Marani, R., & Perri, A. G. (2024). A procedure to compare CNTFET and CMOS technologies through the design of a SRAM cell: A review. International journal of nanoscience and nanotechnology, 20(2), 113–127. https://doi.org/10.22034/ijnn.2024.2021428.2472
- [42] Chu, C., Xu, D., Wang, Y., & Chen, F. (2022). Canopy: A cnfet-based process variation aware systolic DNN accelerator. Proceedings of the acm/IEEE international symposium on low power electronics and design (pp. 1–6). IEEE. https://doi.org/10.1145/3531437.3539703
- [43] Sachdeva, A., Sharma, K., Bhargava, A., & Abbasian, E. (2024). A CNTFET based stable, single-ended 7T SRAM cell with improved write operation. Physica scripta, 99(3), 35011. https://doi.org/10.1088/1402-4896/ad24a8
- [44] Darabi, A., Salehi, M. R., & Abiri, E. (2023). Single-sided gate-wrap-around CNTFET SRAM cell for utilization in reliable IoT-based platforms. AEU-international journal of electronics and communications, 163, 154605. https://doi.org/10.1016/j.aeue.2023.154605
- [45] Sadeghi, A., Ghasemi, R., Ghasemian, H., & Shiri, N. (2023). Efficient and optimized approximate GDI full adders based on dynamic threshold CNTFETs for specific least significant bits. Frontiers of information technology & electronic engineering, 24(4), 599–616. https://doi.org/10.1631/FITEE.2200077
- [46] Darabi, A., Salehi, M. R., & Abiri, E. (2021). Newly energy-efficient SRAM bit-cell using GAA CNT-GDI method with asymmetrical write and built-in read-assist schemes for QR code-based multimedia applications. Microelectronics journal, 114, 105117. https://doi.org/10.1016/j.mejo.2021.105117
- [47] Sajjadi, S. A., Sadrossadat, S. A., Moftakharzadeh, A., Nabavi, M., & Sawan, M. (2024). DNN-Based optimization to significantly speed up and increase the accuracy of electronic circuit design. IEEE transactions on circuits and systems I: Regular papers, 71(3), 1273–1284. https://doi.org/10.1109/TCSI.2023.3347688
- [48] Raja, G. B., & Madheswaran, M. (2013). Design and analysis of 5-T SRAM cell in 32nm CMOS and CNTFET technologies. International journal of electronics and electrical engineering, 1(4), 256–261. https://doi.org/10.12720/ijeee.1.4.256-261
- [49] Yadav, A., & Wairya, S. (2021). Performance and area optimization of SRAM Cell in nanocomputing application. International journal of computing and digital system, 11(1), 1009–1026. http://dx.doi.org/10.12785/ijcds/110182
- [50] Gopinath, A., Cochran, Z., Ytterdal, T., & Rizkalla, M. (2022). SRAM design leveraging material properties of exploratory transistors. Materials today: Proceedings, 57, 368–374. https://doi.org/10.1016/j.matpr.2021.10.327
- [51] Arora, S., & Tripathi, S. L. (2024). A comprehensive analysis of ultra low power GNRFET based 20T hybrid full adder for computing applications. Physica scripta, 99(8), 85008. https://doi.org/10.1088/1402-4896/ad5c0b
- [52] Ghorbani, A., Dolatshahi, M., Zanjani, S. M., & Barekatain, B. (2022). A new low-power dynamic-GDI full adder in CNFET technology. Integration, 83, 46–59. https://doi.org/10.1016/j.vlsi.2021.12.001
- [53] Valdés, R. C., García, F., García, R. Z., López, A., & Hernández, N. (2023). Parameter extraction in thin film transistors using artificial neural networks. Journal of materials science: Materials in electronics, 34(6), 555. https://doi.org/10.1007/s10854-023-09953-z
- [54] Bhuvaneswari, T., & Kathirvelu, M. (2024). A comprehensive analysis on the intelligent VLSI systems design and applications. Indian journal of natural sciences, 15(83). 71174-71180. https://www.researchgate.net/publication/382335425
- [55] Ghorbani, A., Dolatshahi, M., Zanjani, S. M., & Barekatain, B. (2022). A new low power, area efficient 4-bit carry look ahead adder in CNFET technology. Majlesi journal of electrical engineering, 16(1), 1-9. https://oiccpress.com/mjee/article/view/4943
- [56] Chen, F., Song, L., Li, H., & Chen, Y. (2021). Marvel: A vertical resistive accelerator for low-power deep learning inference in monolithic 3D. 2021 design, automation & test in europe conference & exhibition (DATE) (pp. 1240–1245). IEEE. https://doi.org/10.23919/DATE51398.2021.9474208
- [57] Mahida, N., Parikh, K. A., Darji, K., Gupta, R., Tanwar, S., Shahinzadeh, H., & Mohammad-Hosseini, M. (2024). PneuTeleCNN: Deep learning-assisted framework for pneumonia identification in web-enabled telemedicine systems. 2024 10th international conference on web research (ICWR). IEEE. http://dx.doi.org/10.1109/ICWR61162.2024.10533369
- [58] Shahinzadeh, H., Mahmoudi, A., Asilian, A., Sadrarhami, H., Hemmati, M., & Saberi, Y. (2024). Deep learning: A overview of theory and architectures. 2024 20th csi international symposium on artificial intelligence and signal processing (AISP) (pp. 1–11). IEEE. https://doi.org/10.1109/AISP61396.2024.10475265
- [59] Bhavsar, A., Patel, V., Patel, Y., Geddam, R., Gupta, R., Tanwar, S., … & Shahinzadeh, H. (2024). Transfer learning based breast cancer detection for telemedicine systems in healthare environment. 2024 8th international conference on smart cities, internet of things and applications (SCIOT) (pp. 156–161). IEEE. https://doi.org/10.1109/SCIoT62588.2024.10570101
- [60] Vijay, M. M., Kumar, O. P., Francis, S. A. J., Stalin, A. D., & Vincent, S. (2024). Enhancing high-speed digital systems: MVL circuit design with CNTFET and RRAM. Journal of king saud university - computer and information sciences, 36(4), 102033. https://doi.org/10.1016/j.jksuci.2024.102033
- [61] Dutt, A. (2023). Modelling, exploration and optimization of hardware accelerators for deep learning applications. https://dr.ntu.edu.sg/entities/publication/ddc4a592-3921-4c45-8a40-e44232913d94
- [62] Das, R. R., Rajalekshmi, T. R., & James, A. (2024). FinFET to GAA MBCFET: A review and insights. IEEE access, 12, 50556–50577. https://doi.org/10.1109/ACCESS.2024.3384428
- [63] Ghasemi Nejad Raeini, A., Kordrostami, Z., & Hamedi, S. (2021). Coupled NEGF-PSO method for maximizing the current ratio of CNTFETs based on oxide thickness optimization. Journal of computational electronics, 20(5), 1657–1665. https://doi.org/10.1007/s10825-021-01743-2
- [64] Sandhya Rani, S., Pasha Mohammad, H., & Masthan, S. (2024). Remora optimized dynamic neural network to design low-power CNTFET logic gate realization with multiple-valued circuits. Electric power components and systems, 1–14. https://doi.org/10.1080/15325008.2024.2326854
- [65] Mohammaden, A., Fouda, M. E., Alouani, I., Said, L. A., & Radwan, A. G. (2022). CNTFET-based ternary multiply-and-accumulate unit. Electronics, 11(9), 1–10. https://doi.org/10.3390/electronics11091455